157 lines
6.3 KiB
Python
Vendored
157 lines
6.3 KiB
Python
Vendored
#!/usr/bin/env python
|
|
# coding: utf-8
|
|
|
|
# # Tutorial: The `Equation` Class
|
|
#
|
|
# [](https://colab.research.google.com/github/mathLab/PINA/blob/master/tutorials/tutorial12/tutorial.ipynb)
|
|
|
|
# In this tutorial, we will show how to use the `Equation` Class in PINA. Specifically, we will see how use the Class and its inherited classes to enforce residuals minimization in PINNs.
|
|
|
|
# # Example: The Burgers 1D equation
|
|
|
|
# We will start implementing the viscous Burgers 1D problem Class, described as follows:
|
|
#
|
|
#
|
|
# $$
|
|
# \begin{equation}
|
|
# \begin{cases}
|
|
# \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} &= \nu \frac{\partial^2 u}{ \partial x^2}, \quad x\in(0,1), \quad t>0\\
|
|
# u(x,0) &= -\sin (\pi x)\\
|
|
# u(x,t) &= 0 \quad x = \pm 1\\
|
|
# \end{cases}
|
|
# \end{equation}
|
|
# $$
|
|
#
|
|
# where we set $ \nu = \frac{0.01}{\pi}$.
|
|
#
|
|
# In the class that models this problem we will see in action the `Equation` class and one of its inherited classes, the `FixedValue` class.
|
|
|
|
# In[1]:
|
|
|
|
|
|
## routine needed to run the notebook on Google Colab
|
|
try:
|
|
import google.colab
|
|
IN_COLAB = True
|
|
except:
|
|
IN_COLAB = False
|
|
if IN_COLAB:
|
|
get_ipython().system('pip install "pina-mathlab"')
|
|
|
|
#useful imports
|
|
from pina.problem import SpatialProblem, TimeDependentProblem
|
|
from pina.equation import Equation, FixedValue
|
|
from pina.domain import CartesianDomain
|
|
import torch
|
|
from pina.operator import grad, laplacian
|
|
from pina import Condition
|
|
|
|
|
|
|
|
# In[2]:
|
|
|
|
|
|
class Burgers1D(TimeDependentProblem, SpatialProblem):
|
|
|
|
# define the burger equation
|
|
def burger_equation(input_, output_):
|
|
du = grad(output_, input_)
|
|
ddu = grad(du, input_, components=['dudx'])
|
|
return (
|
|
du.extract(['dudt']) +
|
|
output_.extract(['u'])*du.extract(['dudx']) -
|
|
(0.01/torch.pi)*ddu.extract(['ddudxdx'])
|
|
)
|
|
|
|
# define initial condition
|
|
def initial_condition(input_, output_):
|
|
u_expected = -torch.sin(torch.pi*input_.extract(['x']))
|
|
return output_.extract(['u']) - u_expected
|
|
|
|
# assign output/ spatial and temporal variables
|
|
output_variables = ['u']
|
|
spatial_domain = CartesianDomain({'x': [-1, 1]})
|
|
temporal_domain = CartesianDomain({'t': [0, 1]})
|
|
|
|
# problem condition statement
|
|
conditions = {
|
|
'bound_cond1': Condition(domain=CartesianDomain({'x': -1, 't': [0, 1]}), equation=FixedValue(0.)),
|
|
'bound_cond2': Condition(domain=CartesianDomain({'x': 1, 't': [0, 1]}), equation=FixedValue(0.)),
|
|
'time_cond': Condition(domain=CartesianDomain({'x': [-1, 1], 't': 0}), equation=Equation(initial_condition)),
|
|
'phys_cond': Condition(domain=CartesianDomain({'x': [-1, 1], 't': [0, 1]}), equation=Equation(burger_equation)),
|
|
}
|
|
|
|
|
|
#
|
|
# The `Equation` class takes as input a function (in this case it happens twice, with `initial_condition` and `burger_equation`) which computes a residual of an equation, such as a PDE. In a problem class such as the one above, the `Equation` class with such a given input is passed as a parameter in the specified `Condition`.
|
|
#
|
|
# The `FixedValue` class takes as input a value of same dimensions of the output functions; this class can be used to enforce a fixed value for a specific condition, e.g. Dirichlet boundary conditions, as it happens for instance in our example.
|
|
#
|
|
# Once the equations are set as above in the problem conditions, the PINN solver will aim to minimize the residuals described in each equation in the training phase.
|
|
|
|
# Available classes of equations include also:
|
|
# - `FixedGradient` and `FixedFlux`: they work analogously to `FixedValue` class, where we can require a constant value to be enforced, respectively, on the gradient of the solution or the divergence of the solution;
|
|
# - `Laplace`: it can be used to enforce the laplacian of the solution to be zero;
|
|
# - `SystemEquation`: we can enforce multiple conditions on the same subdomain through this class, passing a list of residual equations defined in the problem.
|
|
#
|
|
|
|
# # Defining a new Equation class
|
|
|
|
# `Equation` classes can be also inherited to define a new class. As example, we can see how to rewrite the above problem introducing a new class `Burgers1D`; during the class call, we can pass the viscosity parameter $\nu$:
|
|
|
|
# In[3]:
|
|
|
|
|
|
class Burgers1DEquation(Equation):
|
|
|
|
def __init__(self, nu = 0.):
|
|
"""
|
|
Burgers1D class. This class can be
|
|
used to enforce the solution u to solve the viscous Burgers 1D Equation.
|
|
|
|
:param torch.float32 nu: the viscosity coefficient. Default value is set to 0.
|
|
"""
|
|
self.nu = nu
|
|
|
|
def equation(input_, output_):
|
|
return grad(output_, input_, d='t') +\
|
|
output_*grad(output_, input_, d='x') -\
|
|
self.nu*laplacian(output_, input_, d='x')
|
|
|
|
|
|
super().__init__(equation)
|
|
|
|
|
|
# Now we can just pass the above class as input for the last condition, setting $\nu= \frac{0.01}{\pi}$:
|
|
|
|
# In[4]:
|
|
|
|
|
|
class Burgers1D(TimeDependentProblem, SpatialProblem):
|
|
|
|
# define initial condition
|
|
def initial_condition(input_, output_):
|
|
u_expected = -torch.sin(torch.pi*input_.extract(['x']))
|
|
return output_.extract(['u']) - u_expected
|
|
|
|
# assign output/ spatial and temporal variables
|
|
output_variables = ['u']
|
|
spatial_domain = CartesianDomain({'x': [-1, 1]})
|
|
temporal_domain = CartesianDomain({'t': [0, 1]})
|
|
|
|
# problem condition statement
|
|
conditions = {
|
|
'bound_cond1': Condition(domain=CartesianDomain({'x': -1, 't': [0, 1]}), equation=FixedValue(0.)),
|
|
'bound_cond2': Condition(domain=CartesianDomain({'x': 1, 't': [0, 1]}), equation=FixedValue(0.)),
|
|
'time_cond': Condition(domain=CartesianDomain({'x': [-1, 1], 't': 0}), equation=Equation(initial_condition)),
|
|
'phys_cond': Condition(domain=CartesianDomain({'x': [-1, 1], 't': [0, 1]}), equation=Burgers1DEquation(0.01/torch.pi)),
|
|
}
|
|
|
|
|
|
# # What's next?
|
|
|
|
# Congratulations on completing the `Equation` class tutorial of **PINA**! As we have seen, you can build new classes that inherit `Equation` to store more complex equations, as the Burgers 1D equation, only requiring to pass the characteristic coefficients of the problem.
|
|
# From now on, you can:
|
|
# - define additional complex equation classes (e.g. `SchrodingerEquation`, `NavierStokeEquation`..)
|
|
# - define more `FixedOperator` (e.g. `FixedCurl`)
|