* modify examples/problems * modify tutorials --------- Co-authored-by: Dario Coscia <dariocoscia@dhcp-235.eduroam.sissa.it> Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
74 lines
2.5 KiB
Python
74 lines
2.5 KiB
Python
import argparse
|
|
import torch
|
|
from torch.nn import Softplus
|
|
from pina import Plotter, LabelTensor, Trainer
|
|
from pina.solvers import PINN
|
|
from pina.model import FeedForward
|
|
from problems.parametric_poisson import ParametricPoisson
|
|
|
|
|
|
class myFeature(torch.nn.Module):
|
|
"""
|
|
"""
|
|
def __init__(self):
|
|
super(myFeature, self).__init__()
|
|
|
|
def forward(self, x):
|
|
t = (
|
|
torch.exp(
|
|
- 2*(x.extract(['x']) - x.extract(['mu1']))**2
|
|
- 2*(x.extract(['y']) - x.extract(['mu2']))**2
|
|
)
|
|
)
|
|
return LabelTensor(t, ['k0'])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser(description="Run PINA")
|
|
parser.add_argument("--load", help="directory to save or load file", type=str)
|
|
parser.add_argument("--features", help="extra features", type=int)
|
|
parser.add_argument("--epochs", help="extra features", type=int, default=1000)
|
|
args = parser.parse_args()
|
|
|
|
if args.features is None:
|
|
args.features = 0
|
|
|
|
# extra features
|
|
feat = [myFeature()] if args.features else []
|
|
|
|
# create problem and discretise domain
|
|
ppoisson_problem = ParametricPoisson()
|
|
ppoisson_problem.discretise_domain(n=100, mode='random', variables = ['x', 'y'], locations=['D'])
|
|
ppoisson_problem.discretise_domain(n=100, mode='random', variables = ['mu1', 'mu2'], locations=['D'])
|
|
ppoisson_problem.discretise_domain(n=20, mode='random', variables = ['x', 'y'], locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
|
|
ppoisson_problem.discretise_domain(n=5, mode='random', variables = ['mu1', 'mu2'], locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
|
|
|
|
# create model
|
|
model = FeedForward(
|
|
layers=[10, 10, 10],
|
|
output_dimensions=len(ppoisson_problem.output_variables),
|
|
input_dimensions=len(ppoisson_problem.input_variables) + len(feat),
|
|
func=Softplus
|
|
)
|
|
|
|
# create solver
|
|
pinn = PINN(
|
|
problem=ppoisson_problem,
|
|
model=model,
|
|
extra_features=feat,
|
|
optimizer_kwargs={'lr' : 0.006}
|
|
)
|
|
|
|
# create trainer
|
|
directory = 'pina.parametric_poisson_extrafeats_{}'.format(bool(args.features))
|
|
trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=args.epochs, default_root_dir=directory)
|
|
|
|
|
|
if args.load:
|
|
pinn = PINN.load_from_checkpoint(checkpoint_path=args.load, problem=ppoisson_problem, model=model, extra_features=feat)
|
|
plotter = Plotter()
|
|
plotter.plot(pinn, fixed_variables={'mu1': 1, 'mu2': -1})
|
|
else:
|
|
trainer.train()
|