169 lines
5.2 KiB
Python
169 lines
5.2 KiB
Python
"""Module for Spline model"""
|
|
|
|
import torch
|
|
from ..utils import check_consistency
|
|
|
|
|
|
class Spline(torch.nn.Module):
|
|
"""TODO: Docstring for Spline."""
|
|
|
|
def __init__(self, order=4, knots=None, control_points=None) -> None:
|
|
"""
|
|
Spline model.
|
|
|
|
:param int order: the order of the spline.
|
|
:param torch.Tensor knots: the knot vector.
|
|
:param torch.Tensor control_points: the control points.
|
|
"""
|
|
super().__init__()
|
|
|
|
check_consistency(order, int)
|
|
|
|
if order < 0:
|
|
raise ValueError("Spline order cannot be negative.")
|
|
if knots is None and control_points is None:
|
|
raise ValueError("Knots and control points cannot be both None.")
|
|
|
|
self.order = order
|
|
self.k = order - 1
|
|
|
|
if knots is not None and control_points is not None:
|
|
self.knots = knots
|
|
self.control_points = control_points
|
|
|
|
elif knots is not None:
|
|
print("Warning: control points will be initialized automatically.")
|
|
print(" experimental feature")
|
|
|
|
self.knots = knots
|
|
n = len(knots) - order
|
|
self.control_points = torch.nn.Parameter(
|
|
torch.zeros(n), requires_grad=True
|
|
)
|
|
|
|
elif control_points is not None:
|
|
print("Warning: knots will be initialized automatically.")
|
|
print(" experimental feature")
|
|
|
|
self.control_points = control_points
|
|
|
|
n = len(self.control_points) - 1
|
|
self.knots = {
|
|
"type": "auto",
|
|
"min": 0,
|
|
"max": 1,
|
|
"n": n + 2 + self.order,
|
|
}
|
|
|
|
else:
|
|
raise ValueError("Knots and control points cannot be both None.")
|
|
|
|
if self.knots.ndim != 1:
|
|
raise ValueError("Knot vector must be one-dimensional.")
|
|
|
|
def basis(self, x, k, i, t):
|
|
"""
|
|
Recursive function to compute the basis functions of the spline.
|
|
|
|
:param torch.Tensor x: points to be evaluated.
|
|
:param int k: spline degree
|
|
:param int i: the index of the interval
|
|
:param torch.Tensor t: vector of knots
|
|
:return: the basis functions evaluated at x
|
|
:rtype: torch.Tensor
|
|
"""
|
|
|
|
if k == 0:
|
|
a = torch.where(
|
|
torch.logical_and(t[i] <= x, x < t[i + 1]), 1.0, 0.0
|
|
)
|
|
if i == len(t) - self.order - 1:
|
|
a = torch.where(x == t[-1], 1.0, a)
|
|
a.requires_grad_(True)
|
|
return a
|
|
|
|
if t[i + k] == t[i]:
|
|
c1 = torch.tensor([0.0] * len(x), requires_grad=True)
|
|
else:
|
|
c1 = (x - t[i]) / (t[i + k] - t[i]) * self.basis(x, k - 1, i, t)
|
|
|
|
if t[i + k + 1] == t[i + 1]:
|
|
c2 = torch.tensor([0.0] * len(x), requires_grad=True)
|
|
else:
|
|
c2 = (
|
|
(t[i + k + 1] - x)
|
|
/ (t[i + k + 1] - t[i + 1])
|
|
* self.basis(x, k - 1, i + 1, t)
|
|
)
|
|
|
|
return c1 + c2
|
|
|
|
@property
|
|
def control_points(self):
|
|
"""TODO: Docstring for control_points."""
|
|
return self._control_points
|
|
|
|
@control_points.setter
|
|
def control_points(self, value):
|
|
if isinstance(value, dict):
|
|
if "n" not in value:
|
|
raise ValueError("Invalid value for control_points")
|
|
n = value["n"]
|
|
dim = value.get("dim", 1)
|
|
value = torch.zeros(n, dim)
|
|
|
|
if not isinstance(value, torch.Tensor):
|
|
raise ValueError("Invalid value for control_points")
|
|
self._control_points = torch.nn.Parameter(value, requires_grad=True)
|
|
|
|
@property
|
|
def knots(self):
|
|
"""TODO: Docstring for knots."""
|
|
return self._knots
|
|
|
|
@knots.setter
|
|
def knots(self, value):
|
|
if isinstance(value, dict):
|
|
|
|
type_ = value.get("type", "auto")
|
|
min_ = value.get("min", 0)
|
|
max_ = value.get("max", 1)
|
|
n = value.get("n", 10)
|
|
|
|
if type_ == "uniform":
|
|
value = torch.linspace(min_, max_, n + self.k + 1)
|
|
elif type_ == "auto":
|
|
initial_knots = torch.ones(self.order + 1) * min_
|
|
final_knots = torch.ones(self.order + 1) * max_
|
|
|
|
if n < self.order + 1:
|
|
value = torch.concatenate((initial_knots, final_knots))
|
|
elif n - 2 * self.order + 1 == 1:
|
|
value = torch.Tensor([(max_ + min_) / 2])
|
|
else:
|
|
value = torch.linspace(min_, max_, n - 2 * self.order - 1)
|
|
|
|
value = torch.concatenate((initial_knots, value, final_knots))
|
|
|
|
if not isinstance(value, torch.Tensor):
|
|
raise ValueError("Invalid value for knots")
|
|
|
|
self._knots = value
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Forward pass of the spline model.
|
|
|
|
:param torch.Tensor x: points to be evaluated.
|
|
:return: the spline evaluated at x
|
|
:rtype: torch.Tensor
|
|
"""
|
|
t = self.knots
|
|
k = self.k
|
|
c = self.control_points
|
|
|
|
basis = map(lambda i: self.basis(x, k, i, t)[:, None], range(len(c)))
|
|
y = (torch.cat(list(basis), dim=1) * c).sum(axis=1)
|
|
|
|
return y
|