Files
PINA/pina/data/data_module.py
Filippo Olivo 4177bfbb50 Fix Codacy Warnings (#477)
---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
2025-03-19 17:48:18 +01:00

469 lines
16 KiB
Python

"""
This module contains the PinaDataModule class, which extends the
LightningDataModule class to allow proper creation and management of
different types of Datasets defined in PINA.
"""
import warnings
from lightning.pytorch import LightningDataModule
import torch
from torch_geometric.data import Data
from torch.utils.data import DataLoader, SequentialSampler, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from ..label_tensor import LabelTensor
from .dataset import PinaDatasetFactory, PinaTensorDataset
from ..collector import Collector
class DummyDataloader:
""" "
Dummy dataloader used when batch size is None. It callects all the data
in self.dataset and returns it when it is called a single batch.
"""
def __init__(self, dataset):
"""
param dataset: The dataset object to be processed.
:notes:
- **Distributed Environment**:
- Divides the dataset across processes using the
rank and world size.
- Fetches only the portion of data corresponding to
the current process.
- **Non-Distributed Environment**:
- Fetches the entire dataset.
"""
if (
torch.distributed.is_available()
and torch.distributed.is_initialized()
):
rank = torch.distributed.get_rank()
world_size = torch.distributed.get_world_size()
if len(dataset) < world_size:
raise RuntimeError(
"Dimension of the dataset smaller than world size."
" Increase the size of the partition or use a single GPU"
)
idx, i = [], rank
while i < len(dataset):
idx.append(i)
i += world_size
self.dataset = dataset.fetch_from_idx_list(idx)
else:
self.dataset = dataset.get_all_data()
def __iter__(self):
return self
def __len__(self):
return 1
def __next__(self):
return self.dataset
class Collator:
"""
Class used to collate the batch
"""
def __init__(self, max_conditions_lengths, dataset=None):
self.max_conditions_lengths = max_conditions_lengths
self.callable_function = (
self._collate_custom_dataloader
if max_conditions_lengths is None
else (self._collate_standard_dataloader)
)
self.dataset = dataset
if isinstance(self.dataset, PinaTensorDataset):
self._collate = self._collate_tensor_dataset
else:
self._collate = self._collate_graph_dataset
def _collate_custom_dataloader(self, batch):
return self.dataset.fetch_from_idx_list(batch)
def _collate_standard_dataloader(self, batch):
"""
Function used to collate the batch
"""
batch_dict = {}
if isinstance(batch, dict):
return batch
conditions_names = batch[0].keys()
# Condition names
for condition_name in conditions_names:
single_cond_dict = {}
condition_args = batch[0][condition_name].keys()
for arg in condition_args:
data_list = [
batch[idx][condition_name][arg]
for idx in range(
min(
len(batch),
self.max_conditions_lengths[condition_name],
)
)
]
single_cond_dict[arg] = self._collate(data_list)
batch_dict[condition_name] = single_cond_dict
return batch_dict
@staticmethod
def _collate_tensor_dataset(data_list):
if isinstance(data_list[0], LabelTensor):
return LabelTensor.stack(data_list)
if isinstance(data_list[0], torch.Tensor):
return torch.stack(data_list)
raise RuntimeError("Data must be Tensors or LabelTensor ")
def _collate_graph_dataset(self, data_list):
if isinstance(data_list[0], LabelTensor):
return LabelTensor.cat(data_list)
if isinstance(data_list[0], torch.Tensor):
return torch.cat(data_list)
if isinstance(data_list[0], Data):
return self.dataset.create_graph_batch(data_list)
raise RuntimeError("Data must be Tensors or LabelTensor or pyG Data")
def __call__(self, batch):
return self.callable_function(batch)
class PinaSampler:
"""
Class used to create the sampler instance.
"""
def __new__(cls, dataset, shuffle):
if (
torch.distributed.is_available()
and torch.distributed.is_initialized()
):
sampler = DistributedSampler(dataset, shuffle=shuffle)
else:
if shuffle:
sampler = RandomSampler(dataset)
else:
sampler = SequentialSampler(dataset)
return sampler
class PinaDataModule(LightningDataModule):
"""
This class extend LightningDataModule, allowing proper creation and
management of different types of Datasets defined in PINA
"""
def __init__(
self,
problem,
train_size=0.7,
test_size=0.2,
val_size=0.1,
batch_size=None,
shuffle=True,
repeat=False,
automatic_batching=None,
num_workers=0,
pin_memory=False,
):
"""
Initialize the object, creating datasets based on the input problem.
:param problem: The problem defining the dataset.
:type problem: AbstractProblem
:param train_size: Fraction or number of elements in the training split.
:type train_size: float
:param test_size: Fraction or number of elements in the test split.
:type test_size: float
:param val_size: Fraction or number of elements in the validation split.
:type val_size: float
:param batch_size: Batch size used for training. If None, the entire
dataset is used per batch.
:type batch_size: int or None
:param shuffle: Whether to shuffle the dataset before splitting.
:type shuffle: bool
:param repeat: Whether to repeat the dataset indefinitely.
:type repeat: bool
:param automatic_batching: Whether to enable automatic batching.
:type automatic_batching: bool
:param num_workers: Number of worker threads for data loading.
Default 0 (serial loading)
:type num_workers: int
:param pin_memory: Whether to use pinned memory for faster data
transfer to GPU. (Default False)
:type pin_memory: bool
"""
super().__init__()
# Store fixed attributes
self.batch_size = batch_size
self.shuffle = shuffle
self.repeat = repeat
self.automatic_batching = automatic_batching
if batch_size is None and num_workers != 0:
warnings.warn(
"Setting num_workers when batch_size is None has no effect on "
"the DataLoading process."
)
self.num_workers = 0
else:
self.num_workers = num_workers
if batch_size is None and pin_memory:
warnings.warn(
"Setting pin_memory to True has no effect when "
"batch_size is None."
)
self.pin_memory = False
else:
self.pin_memory = pin_memory
# Collect data
collector = Collector(problem)
collector.store_fixed_data()
collector.store_sample_domains()
# Check if the splits are correct
self._check_slit_sizes(train_size, test_size, val_size)
# Split input data into subsets
splits_dict = {}
if train_size > 0:
splits_dict["train"] = train_size
self.train_dataset = None
else:
self.train_dataloader = super().train_dataloader
if test_size > 0:
splits_dict["test"] = test_size
self.test_dataset = None
else:
self.test_dataloader = super().test_dataloader
if val_size > 0:
splits_dict["val"] = val_size
self.val_dataset = None
else:
self.val_dataloader = super().val_dataloader
self.collector_splits = self._create_splits(collector, splits_dict)
self.transfer_batch_to_device = self._transfer_batch_to_device
def setup(self, stage=None):
"""
Perform the splitting of the dataset
"""
if stage == "fit" or stage is None:
self.train_dataset = PinaDatasetFactory(
self.collector_splits["train"],
max_conditions_lengths=self.find_max_conditions_lengths(
"train"
),
automatic_batching=self.automatic_batching,
)
if "val" in self.collector_splits.keys():
self.val_dataset = PinaDatasetFactory(
self.collector_splits["val"],
max_conditions_lengths=self.find_max_conditions_lengths(
"val"
),
automatic_batching=self.automatic_batching,
)
elif stage == "test":
self.test_dataset = PinaDatasetFactory(
self.collector_splits["test"],
max_conditions_lengths=self.find_max_conditions_lengths("test"),
automatic_batching=self.automatic_batching,
)
else:
raise ValueError("stage must be either 'fit' or 'test'.")
@staticmethod
def _split_condition(condition_dict, splits_dict):
len_condition = len(condition_dict["input"])
lengths = [
int(len_condition * length) for length in splits_dict.values()
]
remainder = len_condition - sum(lengths)
for i in range(remainder):
lengths[i % len(lengths)] += 1
splits_dict = {
k: max(1, v) for k, v in zip(splits_dict.keys(), lengths)
}
to_return_dict = {}
offset = 0
for stage, stage_len in splits_dict.items():
to_return_dict[stage] = {
k: v[offset : offset + stage_len]
for k, v in condition_dict.items()
if k != "equation"
# Equations are NEVER dataloaded
}
if offset + stage_len >= len_condition:
offset = len_condition - 1
continue
offset += stage_len
return to_return_dict
def _create_splits(self, collector, splits_dict):
"""
Create the dataset objects putting data
"""
# ----------- Auxiliary function ------------
def _apply_shuffle(condition_dict, len_data):
idx = torch.randperm(len_data)
for k, v in condition_dict.items():
if k == "equation":
continue
if isinstance(v, list):
condition_dict[k] = [v[i] for i in idx]
elif isinstance(v, LabelTensor):
condition_dict[k] = LabelTensor(v.tensor[idx], v.labels)
elif isinstance(v, torch.Tensor):
condition_dict[k] = v[idx]
else:
raise ValueError(f"Data type {type(v)} not supported")
# ----------- End auxiliary function ------------
split_names = list(splits_dict.keys())
dataset_dict = {name: {} for name in split_names}
for (
condition_name,
condition_dict,
) in collector.data_collections.items():
len_data = len(condition_dict["input"])
if self.shuffle:
_apply_shuffle(condition_dict, len_data)
for key, data in self._split_condition(
condition_dict, splits_dict
).items():
dataset_dict[key].update({condition_name: data})
return dataset_dict
def _create_dataloader(self, split, dataset):
shuffle = self.shuffle if split == "train" else False
# Suppress the warning about num_workers.
# In many cases, especially for PINNs,
# serial data loading can outperform parallel data loading.
warnings.filterwarnings(
"ignore",
message=(
"The '(train|val|test)_dataloader' does not have many workers "
"which may be a bottleneck."
),
module="lightning.pytorch.trainer.connectors.data_connector",
)
# Use custom batching (good if batch size is large)
if self.batch_size is not None:
sampler = PinaSampler(dataset, shuffle)
if self.automatic_batching:
collate = Collator(
self.find_max_conditions_lengths(split), dataset=dataset
)
else:
collate = Collator(None, dataset=dataset)
return DataLoader(
dataset,
self.batch_size,
collate_fn=collate,
sampler=sampler,
num_workers=self.num_workers,
)
dataloader = DummyDataloader(dataset)
dataloader.dataset = self._transfer_batch_to_device(
dataloader.dataset, self.trainer.strategy.root_device, 0
)
self.transfer_batch_to_device = self._transfer_batch_to_device_dummy
return dataloader
def find_max_conditions_lengths(self, split):
"""
Define the maximum length of the conditions.
:param split: The splits of the dataset.
:type split: dict
:return: The maximum length of the conditions.
:rtype: dict
"""
max_conditions_lengths = {}
for k, v in self.collector_splits[split].items():
if self.batch_size is None:
max_conditions_lengths[k] = len(v["input"])
elif self.repeat:
max_conditions_lengths[k] = self.batch_size
else:
max_conditions_lengths[k] = min(
len(v["input"]), self.batch_size
)
return max_conditions_lengths
def val_dataloader(self):
"""
Create the validation dataloader
"""
return self._create_dataloader("val", self.val_dataset)
def train_dataloader(self):
"""
Create the training dataloader
"""
return self._create_dataloader("train", self.train_dataset)
def test_dataloader(self):
"""
Create the testing dataloader
"""
return self._create_dataloader("test", self.test_dataset)
@staticmethod
def _transfer_batch_to_device_dummy(batch, device, dataloader_idx):
return batch
def _transfer_batch_to_device(self, batch, device, dataloader_idx):
"""
Transfer the batch to the device. This method is called in the
training loop and is used to transfer the batch to the device.
"""
batch = [
(
k,
super(LightningDataModule, self).transfer_batch_to_device(
v, device, dataloader_idx
),
)
for k, v in batch.items()
]
return batch
@staticmethod
def _check_slit_sizes(train_size, test_size, val_size):
"""
Check if the splits are correct
"""
if train_size < 0 or test_size < 0 or val_size < 0:
raise ValueError("The splits must be positive")
if abs(train_size + test_size + val_size - 1) > 1e-6:
raise ValueError("The sum of the splits must be 1")
@property
def input(self):
"""
# TODO
"""
to_return = {}
if hasattr(self, "train_dataset") and self.train_dataset is not None:
to_return["train"] = self.train_dataset.input
if hasattr(self, "val_dataset") and self.val_dataset is not None:
to_return["val"] = self.val_dataset.input
if hasattr(self, "test_dataset") and self.test_dataset is not None:
to_return = self.test_dataset.input
return to_return