172 lines
4.8 KiB
Python
172 lines
4.8 KiB
Python
import torch
|
|
import pytest
|
|
import numpy as np
|
|
from scipy.interpolate import BSpline
|
|
from pina.model import Spline
|
|
from pina import LabelTensor
|
|
|
|
|
|
# Utility quantities for testing
|
|
order = torch.randint(1, 8, (1,)).item()
|
|
n_ctrl_pts = torch.randint(order, order + 5, (1,)).item()
|
|
n_knots = order + n_ctrl_pts
|
|
|
|
# Input tensor
|
|
pts = LabelTensor(torch.linspace(0, 1, 100).reshape(-1, 1), ["x"])
|
|
|
|
|
|
# Function to compare with scipy implementation
|
|
def check_scipy_spline(model, x, output_):
|
|
|
|
# Define scipy spline
|
|
scipy_spline = BSpline(
|
|
t=model.knots.detach().numpy(),
|
|
c=model.control_points.detach().numpy(),
|
|
k=model.order - 1,
|
|
)
|
|
|
|
# Compare outputs
|
|
np.testing.assert_allclose(
|
|
output_.squeeze().detach().numpy(),
|
|
scipy_spline(x).flatten(),
|
|
atol=1e-5,
|
|
rtol=1e-5,
|
|
)
|
|
|
|
|
|
# Define all possible combinations of valid arguments for the Spline class
|
|
valid_args = [
|
|
{
|
|
"order": order,
|
|
"control_points": torch.rand(n_ctrl_pts),
|
|
"knots": torch.linspace(0, 1, n_knots),
|
|
},
|
|
{
|
|
"order": order,
|
|
"control_points": torch.rand(n_ctrl_pts),
|
|
"knots": {"n": n_knots, "min": 0, "max": 1, "mode": "auto"},
|
|
},
|
|
{
|
|
"order": order,
|
|
"control_points": torch.rand(n_ctrl_pts),
|
|
"knots": {"n": n_knots, "min": 0, "max": 1, "mode": "uniform"},
|
|
},
|
|
{
|
|
"order": order,
|
|
"control_points": None,
|
|
"knots": torch.linspace(0, 1, n_knots),
|
|
},
|
|
{
|
|
"order": order,
|
|
"control_points": None,
|
|
"knots": {"n": n_knots, "min": 0, "max": 1, "mode": "auto"},
|
|
},
|
|
{
|
|
"order": order,
|
|
"control_points": None,
|
|
"knots": {"n": n_knots, "min": 0, "max": 1, "mode": "uniform"},
|
|
},
|
|
{
|
|
"order": order,
|
|
"control_points": torch.rand(n_ctrl_pts),
|
|
"knots": None,
|
|
},
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("args", valid_args)
|
|
def test_constructor(args):
|
|
Spline(**args)
|
|
|
|
# Should fail if order is not a positive integer
|
|
with pytest.raises(AssertionError):
|
|
Spline(
|
|
order=-1, control_points=args["control_points"], knots=args["knots"]
|
|
)
|
|
|
|
# Should fail if control_points is not None or a torch.Tensor
|
|
with pytest.raises(ValueError):
|
|
Spline(
|
|
order=args["order"], control_points=[1, 2, 3], knots=args["knots"]
|
|
)
|
|
|
|
# Should fail if knots is not None, a torch.Tensor, or a dict
|
|
with pytest.raises(ValueError):
|
|
Spline(
|
|
order=args["order"], control_points=args["control_points"], knots=5
|
|
)
|
|
|
|
# Should fail if both knots and control_points are None
|
|
with pytest.raises(ValueError):
|
|
Spline(order=args["order"], control_points=None, knots=None)
|
|
|
|
# Should fail if knots is not one-dimensional
|
|
with pytest.raises(ValueError):
|
|
Spline(
|
|
order=args["order"],
|
|
control_points=args["control_points"],
|
|
knots=torch.rand(n_knots, 4),
|
|
)
|
|
|
|
# Should fail if control_points is not one-dimensional
|
|
with pytest.raises(ValueError):
|
|
Spline(
|
|
order=args["order"],
|
|
control_points=torch.rand(n_ctrl_pts, 4),
|
|
knots=args["knots"],
|
|
)
|
|
|
|
# Should fail if the number of knots != order + number of control points
|
|
# If control points are None, they are initialized to fulfill this condition
|
|
if args["control_points"] is not None:
|
|
with pytest.raises(ValueError):
|
|
Spline(
|
|
order=args["order"],
|
|
control_points=args["control_points"],
|
|
knots=torch.linspace(0, 1, n_knots + 1),
|
|
)
|
|
|
|
# Should fail if the knot dict is missing required keys
|
|
with pytest.raises(ValueError):
|
|
Spline(
|
|
order=args["order"],
|
|
control_points=args["control_points"],
|
|
knots={"n": n_knots, "min": 0, "max": 1},
|
|
)
|
|
|
|
# Should fail if the knot dict has invalid 'mode' key
|
|
with pytest.raises(ValueError):
|
|
Spline(
|
|
order=args["order"],
|
|
control_points=args["control_points"],
|
|
knots={"n": n_knots, "min": 0, "max": 1, "mode": "invalid"},
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("args", valid_args)
|
|
def test_forward(args):
|
|
|
|
# Define the model
|
|
model = Spline(**args)
|
|
|
|
# Evaluate the model
|
|
output_ = model(pts)
|
|
assert output_.shape == (pts.shape[0], 1)
|
|
|
|
# Compare with scipy implementation only for interpolant knots (mode: auto)
|
|
if isinstance(args["knots"], dict) and args["knots"]["mode"] == "auto":
|
|
check_scipy_spline(model, pts, output_)
|
|
|
|
|
|
@pytest.mark.parametrize("args", valid_args)
|
|
def test_backward(args):
|
|
|
|
# Define the model
|
|
model = Spline(**args)
|
|
|
|
# Evaluate the model
|
|
output_ = model(pts)
|
|
loss = torch.mean(output_)
|
|
loss.backward()
|
|
assert model.control_points.grad.shape == model.control_points.shape
|