Files
PINA/examples/run_parametric_poisson.py
2022-07-21 13:41:59 +02:00

66 lines
2.1 KiB
Python

import argparse
import torch
from torch.nn import Softplus
from pina import Plotter, LabelTensor, PINN
from pina.model import FeedForward
from problems.parametric_poisson import ParametricPoisson
class myFeature(torch.nn.Module):
"""
"""
def __init__(self):
super(myFeature, self).__init__()
def forward(self, x):
t = (
torch.exp(
- 2*(x.extract(['x']) - x.extract(['mu1']))**2
- 2*(x.extract(['y']) - x.extract(['mu2']))**2
)
)
return LabelTensor(t, ['k0'])
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run PINA")
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("-s", "-save", action="store_true")
group.add_argument("-l", "-load", action="store_true")
parser.add_argument("id_run", help="number of run", type=int)
parser.add_argument("features", help="extra features", type=int)
args = parser.parse_args()
feat = [myFeature()] if args.features else []
poisson_problem = ParametricPoisson()
model = FeedForward(
layers=[10, 10, 10],
output_variables=poisson_problem.output_variables,
input_variables=poisson_problem.input_variables,
func=Softplus,
extra_features=feat
)
pinn = PINN(poisson_problem, model, lr=0.006, regularizer=1e-6)
if args.s:
pinn.span_pts(
{'variables': ['x', 'y'], 'mode': 'random', 'n': 100},
{'variables': ['mu1', 'mu2'], 'mode': 'grid', 'n': 5},
locations=['D'])
pinn.span_pts(
{'variables': ['x', 'y'], 'mode': 'grid', 'n': 20},
{'variables': ['mu1', 'mu2'], 'mode': 'grid', 'n': 5},
locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
pinn.train(10000, 100)
pinn.save_state('pina.poisson_param')
else:
pinn.load_state('pina.poisson_param')
plotter = Plotter()
plotter.plot(pinn, fixed_variables={'mu1': 0, 'mu2': 1}, levels=21)
plotter.plot(pinn, fixed_variables={'mu1': 1, 'mu2': -1}, levels=21)