Files
PINA/tests/test_model/test_deeponet.py
2024-10-10 18:36:47 +02:00

132 lines
5.0 KiB
Python

import pytest
import torch
from torch.nn import Linear
from pina import LabelTensor
from pina.model import DeepONet
from pina.model import FeedForward
data = torch.rand((20, 3))
input_vars = ['a', 'b', 'c']
input_ = LabelTensor(data, input_vars)
symbol_funcs_red = DeepONet._symbol_functions(dim=-1)
output_dims = [1, 5, 10, 20]
def test_constructor():
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
DeepONet(branch_net=branch_net,
trunk_net=trunk_net,
input_indeces_branch_net=['a'],
input_indeces_trunk_net=['b', 'c'],
reduction='+',
aggregator='*')
def test_constructor_fails_when_invalid_inner_layer_size():
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=2, output_dimensions=8)
with pytest.raises(ValueError):
DeepONet(branch_net=branch_net,
trunk_net=trunk_net,
input_indeces_branch_net=['a'],
input_indeces_trunk_net=['b', 'c'],
reduction='+',
aggregator='*')
def test_forward_extract_str():
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
model = DeepONet(branch_net=branch_net,
trunk_net=trunk_net,
input_indeces_branch_net=['a'],
input_indeces_trunk_net=['b', 'c'],
reduction='+',
aggregator='*')
model(input_)
assert model(input_).shape[-1] == 1
def test_forward_extract_int():
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
model = DeepONet(branch_net=branch_net,
trunk_net=trunk_net,
input_indeces_branch_net=[0],
input_indeces_trunk_net=[1, 2],
reduction='+',
aggregator='*')
model(data)
def test_backward_extract_int():
data = torch.rand((20, 3))
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
model = DeepONet(branch_net=branch_net,
trunk_net=trunk_net,
input_indeces_branch_net=[0],
input_indeces_trunk_net=[1, 2],
reduction='+',
aggregator='*')
data.requires_grad = True
model(data)
l=torch.mean(model(data))
l.backward()
assert data._grad.shape == torch.Size([20,3])
def test_forward_extract_str_wrong():
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
model = DeepONet(branch_net=branch_net,
trunk_net=trunk_net,
input_indeces_branch_net=['a'],
input_indeces_trunk_net=['b', 'c'],
reduction='+',
aggregator='*')
with pytest.raises(RuntimeError):
model(data)
def test_backward_extract_str_wrong():
data = torch.rand((20, 3))
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
model = DeepONet(branch_net=branch_net,
trunk_net=trunk_net,
input_indeces_branch_net=['a'],
input_indeces_trunk_net=['b', 'c'],
reduction='+',
aggregator='*')
data.requires_grad = True
with pytest.raises(RuntimeError):
model(data)
l=torch.mean(model(data))
l.backward()
assert data._grad.shape == torch.Size([20,3])
@pytest.mark.parametrize('red', symbol_funcs_red)
def test_forward_symbol_funcs(red):
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
model = DeepONet(branch_net=branch_net,
trunk_net=trunk_net,
input_indeces_branch_net=['a'],
input_indeces_trunk_net=['b', 'c'],
reduction=red,
aggregator='*')
model(input_)
assert model(input_).shape[-1] == 1
@pytest.mark.parametrize('out_dim', output_dims)
def test_forward_callable_reduction(out_dim):
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
reduction_layer = Linear(10, out_dim)
model = DeepONet(branch_net=branch_net,
trunk_net=trunk_net,
input_indeces_branch_net=['a'],
input_indeces_trunk_net=['b', 'c'],
reduction=reduction_layer,
aggregator='*')
model(input_)
assert model(input_).shape[-1] == out_dim