Files
PINA/examples/run_parametric_poisson.py
2022-05-05 17:12:31 +02:00

62 lines
2.0 KiB
Python

import argparse
import torch
from torch.nn import Softplus
from pina import Plotter
from pina import PINN as pPINN
from problems.parametric_poisson import ParametricPoisson
from pina.model import FeedForward
class myFeature(torch.nn.Module):
"""
"""
def __init__(self):
super(myFeature, self).__init__()
def forward(self, x):
return torch.exp(- 2*(x.extract(['x']) - x.extract(['mu1']))**2 - 2*(x.extract(['y']) - x.extract(['mu2']))**2)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run PINA")
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("-s", "-save", action="store_true")
group.add_argument("-l", "-load", action="store_true")
parser.add_argument("id_run", help="number of run", type=int)
parser.add_argument("features", help="extra features", type=int)
args = parser.parse_args()
feat = [myFeature()] if args.features else []
poisson_problem = ParametricPoisson()
model = FeedForward(
layers=[10, 10, 10],
output_variables=poisson_problem.output_variables,
input_variables=poisson_problem.input_variables,
func=Softplus,
extra_features=feat
)
pinn = pPINN(
poisson_problem,
model,
lr=0.0006,
regularizer=1e-6)
if args.s:
pinn.span_pts(500, n_params=10, mode_spatial='random', locations=['D'])
pinn.span_pts(200, n_params=10, mode_spatial='random', locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
pinn.plot_pts()
pinn.train(10000, 100)
with open('param_poisson_history_{}_{}.txt'.format(args.id_run, args.features), 'w') as file_:
for i, losses in enumerate(pinn.history):
file_.write('{} {}\n'.format(i, sum(losses)))
pinn.save_state('pina.poisson_param')
else:
pinn.load_state('pina.poisson_param')
plotter = Plotter()
plotter.plot(pinn, component='u', parametric=True, params_value=0)