Files
PINA/tests/test_layers/test_embedding.py
2024-06-11 12:31:02 +01:00

96 lines
3.7 KiB
Python

import torch
import pytest
from pina.model.layers import PeriodicBoundaryEmbedding, FourierFeatureEmbedding
# test tolerance
tol = 1e-6
def check_same_columns(tensor):
# Get the first column and compute residual
residual = tensor - tensor[0]
zeros = torch.zeros_like(residual)
# Compare each column with the first column
all_same = torch.allclose(input=residual,other=zeros,atol=tol)
return all_same
def grad(u, x):
"""
Compute the first derivative of u with respect to x.
"""
return torch.autograd.grad(u, x, grad_outputs=torch.ones_like(u),
create_graph=True, allow_unused=True,
retain_graph=True)[0]
def test_constructor_PeriodicBoundaryEmbedding():
PeriodicBoundaryEmbedding(input_dimension=1, periods=2)
PeriodicBoundaryEmbedding(input_dimension=1, periods={'x': 3, 'y' : 4})
PeriodicBoundaryEmbedding(input_dimension=1, periods={0: 3, 1 : 4})
PeriodicBoundaryEmbedding(input_dimension=1, periods=2, output_dimension=10)
with pytest.raises(TypeError):
PeriodicBoundaryEmbedding()
with pytest.raises(ValueError):
PeriodicBoundaryEmbedding(input_dimension=1., periods=1)
PeriodicBoundaryEmbedding(input_dimension=1, periods=1,
output_dimension=1.)
PeriodicBoundaryEmbedding(input_dimension=1, periods={'x':'x'})
PeriodicBoundaryEmbedding(input_dimension=1, periods={0:'x'})
@pytest.mark.parametrize("period", [1, 4, 10])
@pytest.mark.parametrize("input_dimension", [1, 2, 3])
def test_forward_backward_same_period_PeriodicBoundaryEmbedding(input_dimension,
period):
func = torch.nn.Sequential(
PeriodicBoundaryEmbedding(input_dimension=input_dimension,
output_dimension=60, periods=period),
torch.nn.Tanh(),
torch.nn.Linear(60, 60),
torch.nn.Tanh(),
torch.nn.Linear(60, 1)
)
# coordinates
x = period * torch.tensor([[0.],[1.]])
if input_dimension == 2:
x = torch.cartesian_prod(x.flatten(),x.flatten())
elif input_dimension == 3:
x = torch.cartesian_prod(x.flatten(),x.flatten(),x.flatten())
x.requires_grad = True
# output
f = func(x)
assert check_same_columns(f)
# compute backward
loss = f.mean()
loss.backward()
def test_constructor_FourierFeatureEmbedding():
FourierFeatureEmbedding(input_dimension=1, output_dimension=20,
sigma=1)
with pytest.raises(TypeError):
FourierFeatureEmbedding()
with pytest.raises(RuntimeError):
FourierFeatureEmbedding(input_dimension=1, output_dimension=3, sigma=1)
with pytest.raises(ValueError):
FourierFeatureEmbedding(input_dimension='x', output_dimension=20,
sigma=1)
FourierFeatureEmbedding(input_dimension=1, output_dimension='x',
sigma=1)
FourierFeatureEmbedding(input_dimension=1, output_dimension=20,
sigma='x')
@pytest.mark.parametrize("output_dimension", [2, 4, 6])
@pytest.mark.parametrize("input_dimension", [1, 2, 3])
@pytest.mark.parametrize("sigma", [10, 1, 0.1])
def test_forward_backward_FourierFeatureEmbedding(input_dimension,
output_dimension,
sigma):
func = FourierFeatureEmbedding(input_dimension, output_dimension,
sigma)
# coordinates
x = torch.rand((10, input_dimension), requires_grad=True)
# output
f = func(x)
assert f.shape[-1] == output_dimension
# compute backward
loss = f.mean()
loss.backward()