Files
PINA/tests/test_solvers/test_competitive_pinn.py
Dario Coscia 9cae9a438f Update solvers (#434)
* Enable DDP training with batch_size=None and add validity check for split sizes
* Refactoring SolverInterfaces (#435)
* Solver update + weighting
* Updating PINN for 0.2
* Modify GAROM + tests
* Adding more versatile loggers
* Disable compilation when running on Windows
* Fix tests

---------

Co-authored-by: giovanni <giovanni.canali98@yahoo.it>
Co-authored-by: FilippoOlivo <filippo@filippoolivo.com>
2025-03-19 17:46:35 +01:00

145 lines
5.0 KiB
Python

import torch
import pytest
from pina import LabelTensor, Condition
from pina.solvers import CompetitivePINN as CompPINN
from pina.trainer import Trainer
from pina.model import FeedForward
from pina.problem.zoo import (
Poisson2DSquareProblem as Poisson,
InversePoisson2DSquareProblem as InversePoisson
)
from pina.condition import (
InputOutputPointsCondition,
InputPointsEquationCondition,
DomainEquationCondition
)
from torch._dynamo.eval_frame import OptimizedModule
# define problems and model
problem = Poisson()
problem.discretise_domain(50)
inverse_problem = InversePoisson()
inverse_problem.discretise_domain(50)
model = FeedForward(
len(problem.input_variables),
len(problem.output_variables)
)
# add input-output condition to test supervised learning
input_pts = torch.rand(50, len(problem.input_variables))
input_pts = LabelTensor(input_pts, problem.input_variables)
output_pts = torch.rand(50, len(problem.output_variables))
output_pts = LabelTensor(output_pts, problem.output_variables)
problem.conditions['data'] = Condition(
input_points=input_pts,
output_points=output_pts
)
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("discr", [None, model])
def test_constructor(problem, discr):
solver = CompPINN(problem=problem, model=model)
solver = CompPINN(problem=problem, model=model, discriminator=discr)
assert solver.accepted_conditions_types == (
InputOutputPointsCondition,
InputPointsEquationCondition,
DomainEquationCondition
)
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_train(problem, batch_size, compile):
solver = CompPINN(problem=problem, model=model)
trainer = Trainer(solver=solver,
max_epochs=2,
accelerator='cpu',
batch_size=batch_size,
train_size=1.,
val_size=0.,
test_size=0.,
compile=compile)
trainer.train()
if trainer.compile:
assert (all([isinstance(model, OptimizedModule)
for model in solver.models]))
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_validation(problem, batch_size, compile):
solver = CompPINN(problem=problem, model=model)
trainer = Trainer(solver=solver,
max_epochs=2,
accelerator='cpu',
batch_size=batch_size,
train_size=0.9,
val_size=0.1,
test_size=0.,
compile=compile)
trainer.train()
if trainer.compile:
assert (all([isinstance(model, OptimizedModule)
for model in solver.models]))
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_test(problem, batch_size, compile):
solver = CompPINN(problem=problem, model=model)
trainer = Trainer(solver=solver,
max_epochs=2,
accelerator='cpu',
batch_size=batch_size,
train_size=0.7,
val_size=0.2,
test_size=0.1,
compile=compile)
trainer.test()
if trainer.compile:
assert (all([isinstance(model, OptimizedModule)
for model in solver.models]))
@pytest.mark.parametrize("problem", [problem, inverse_problem])
def test_train_load_restore(problem):
dir = "tests/test_solvers/tmp"
problem = problem
solver = CompPINN(problem=problem, model=model)
trainer = Trainer(solver=solver,
max_epochs=5,
accelerator='cpu',
batch_size=None,
train_size=0.7,
val_size=0.2,
test_size=0.1,
default_root_dir=dir)
trainer.train()
# restore
new_trainer = Trainer(solver=solver, max_epochs=5, accelerator='cpu')
new_trainer.train(
ckpt_path=f'{dir}/lightning_logs/version_0/checkpoints/' +
'epoch=4-step=5.ckpt')
# loading
new_solver = CompPINN.load_from_checkpoint(
f'{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt',
problem=problem, model=model)
test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
assert new_solver.forward(test_pts).shape == (20, 1)
assert new_solver.forward(test_pts).shape == (
solver.forward(test_pts).shape
)
torch.testing.assert_close(
new_solver.forward(test_pts),
solver.forward(test_pts))
# rm directories
import shutil
shutil.rmtree('tests/test_solvers/tmp')