* Enable DDP training with batch_size=None and add validity check for split sizes * Refactoring SolverInterfaces (#435) * Solver update + weighting * Updating PINN for 0.2 * Modify GAROM + tests * Adding more versatile loggers * Disable compilation when running on Windows * Fix tests --------- Co-authored-by: giovanni <giovanni.canali98@yahoo.it> Co-authored-by: FilippoOlivo <filippo@filippoolivo.com>
188 lines
7.1 KiB
Python
188 lines
7.1 KiB
Python
import torch
|
|
import pytest
|
|
|
|
from pina import Condition, LabelTensor
|
|
from pina.problem import AbstractProblem
|
|
from pina.condition import InputOutputPointsCondition
|
|
from pina.solvers import ReducedOrderModelSolver
|
|
from pina.trainer import Trainer
|
|
from pina.model import FeedForward
|
|
from pina.problem.zoo import Poisson2DSquareProblem
|
|
from torch._dynamo.eval_frame import OptimizedModule
|
|
|
|
|
|
class LabelTensorProblem(AbstractProblem):
|
|
input_variables = ['u_0', 'u_1']
|
|
output_variables = ['u']
|
|
conditions = {
|
|
'data': Condition(
|
|
input_points=LabelTensor(torch.randn(20, 2), ['u_0', 'u_1']),
|
|
output_points=LabelTensor(torch.randn(20, 1), ['u'])),
|
|
}
|
|
|
|
|
|
class TensorProblem(AbstractProblem):
|
|
input_variables = ['u_0', 'u_1']
|
|
output_variables = ['u']
|
|
conditions = {
|
|
'data': Condition(
|
|
input_points=torch.randn(20, 2),
|
|
output_points=torch.randn(20, 1))
|
|
}
|
|
|
|
|
|
class AE(torch.nn.Module):
|
|
def __init__(self, input_dimensions, rank):
|
|
super().__init__()
|
|
self.encode = FeedForward(
|
|
input_dimensions, rank, layers=[input_dimensions//4])
|
|
self.decode = FeedForward(
|
|
rank, input_dimensions, layers=[input_dimensions//4])
|
|
|
|
|
|
class AE_missing_encode(torch.nn.Module):
|
|
def __init__(self, input_dimensions, rank):
|
|
super().__init__()
|
|
self.encode = FeedForward(
|
|
input_dimensions, rank, layers=[input_dimensions//4])
|
|
|
|
|
|
class AE_missing_decode(torch.nn.Module):
|
|
def __init__(self, input_dimensions, rank):
|
|
super().__init__()
|
|
self.decode = FeedForward(
|
|
rank, input_dimensions, layers=[input_dimensions//4])
|
|
|
|
|
|
rank = 10
|
|
model = AE(2, 1)
|
|
interpolation_net = FeedForward(2, rank)
|
|
reduction_net = AE(1, rank)
|
|
|
|
|
|
def test_constructor():
|
|
problem = TensorProblem()
|
|
ReducedOrderModelSolver(problem=problem,
|
|
interpolation_network=interpolation_net,
|
|
reduction_network=reduction_net)
|
|
ReducedOrderModelSolver(problem=LabelTensorProblem(),
|
|
reduction_network=reduction_net,
|
|
interpolation_network=interpolation_net)
|
|
assert ReducedOrderModelSolver.accepted_conditions_types == InputOutputPointsCondition
|
|
with pytest.raises(SyntaxError):
|
|
ReducedOrderModelSolver(problem=problem,
|
|
reduction_network=AE_missing_encode(
|
|
len(problem.output_variables), rank),
|
|
interpolation_network=interpolation_net)
|
|
ReducedOrderModelSolver(problem=problem,
|
|
reduction_network=AE_missing_decode(
|
|
len(problem.output_variables), rank),
|
|
interpolation_network=interpolation_net)
|
|
with pytest.raises(ValueError):
|
|
ReducedOrderModelSolver(problem=Poisson2DSquareProblem(),
|
|
reduction_network=reduction_net,
|
|
interpolation_network=interpolation_net)
|
|
|
|
|
|
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
|
|
@pytest.mark.parametrize("use_lt", [True, False])
|
|
@pytest.mark.parametrize("compile", [True, False])
|
|
def test_solver_train(use_lt, batch_size, compile):
|
|
problem = LabelTensorProblem() if use_lt else TensorProblem()
|
|
solver = ReducedOrderModelSolver(problem=problem,
|
|
reduction_network=reduction_net,
|
|
interpolation_network=interpolation_net, use_lt=use_lt)
|
|
trainer = Trainer(solver=solver,
|
|
max_epochs=2,
|
|
accelerator='cpu',
|
|
batch_size=batch_size,
|
|
train_size=1.,
|
|
test_size=0.,
|
|
val_size=0.,
|
|
compile=compile)
|
|
trainer.train()
|
|
if trainer.compile:
|
|
for v in solver.model.values():
|
|
assert (isinstance(v, OptimizedModule))
|
|
|
|
|
|
@pytest.mark.parametrize("use_lt", [True, False])
|
|
@pytest.mark.parametrize("compile", [True, False])
|
|
def test_solver_validation(use_lt, compile):
|
|
problem = LabelTensorProblem() if use_lt else TensorProblem()
|
|
solver = ReducedOrderModelSolver(problem=problem,
|
|
reduction_network=reduction_net,
|
|
interpolation_network=interpolation_net, use_lt=use_lt)
|
|
trainer = Trainer(solver=solver,
|
|
max_epochs=2,
|
|
accelerator='cpu',
|
|
batch_size=None,
|
|
train_size=0.9,
|
|
val_size=0.1,
|
|
test_size=0.,
|
|
compile=compile)
|
|
trainer.train()
|
|
if trainer.compile:
|
|
for v in solver.model.values():
|
|
assert (isinstance(v, OptimizedModule))
|
|
|
|
|
|
@pytest.mark.parametrize("use_lt", [True, False])
|
|
@pytest.mark.parametrize("compile", [True, False])
|
|
def test_solver_test(use_lt, compile):
|
|
problem = LabelTensorProblem() if use_lt else TensorProblem()
|
|
solver = ReducedOrderModelSolver(problem=problem,
|
|
reduction_network=reduction_net,
|
|
interpolation_network=interpolation_net, use_lt=use_lt)
|
|
trainer = Trainer(solver=solver,
|
|
max_epochs=2,
|
|
accelerator='cpu',
|
|
batch_size=None,
|
|
train_size=0.8,
|
|
val_size=0.1,
|
|
test_size=0.1,
|
|
compile=compile)
|
|
trainer.train()
|
|
if trainer.compile:
|
|
for v in solver.model.values():
|
|
assert (isinstance(v, OptimizedModule))
|
|
|
|
|
|
def test_train_load_restore():
|
|
dir = "tests/test_solvers/tmp/"
|
|
problem = LabelTensorProblem()
|
|
solver = ReducedOrderModelSolver(problem=problem,
|
|
|
|
reduction_network=reduction_net,
|
|
interpolation_network=interpolation_net)
|
|
trainer = Trainer(solver=solver,
|
|
max_epochs=5,
|
|
accelerator='cpu',
|
|
batch_size=None,
|
|
train_size=0.9,
|
|
test_size=0.1,
|
|
val_size=0.,
|
|
default_root_dir=dir)
|
|
trainer.train()
|
|
# restore
|
|
ntrainer = Trainer(solver=solver,
|
|
max_epochs=5,
|
|
accelerator='cpu',)
|
|
ntrainer.train(
|
|
ckpt_path=f'{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt')
|
|
# loading
|
|
new_solver = ReducedOrderModelSolver.load_from_checkpoint(
|
|
f'{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt',
|
|
problem=problem,
|
|
reduction_network=reduction_net,
|
|
interpolation_network=interpolation_net)
|
|
test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
|
|
assert new_solver.forward(test_pts).shape == (20, 1)
|
|
assert new_solver.forward(test_pts).shape == solver.forward(test_pts).shape
|
|
torch.testing.assert_close(
|
|
new_solver.forward(test_pts),
|
|
solver.forward(test_pts))
|
|
# rm directories
|
|
import shutil
|
|
shutil.rmtree('tests/test_solvers/tmp')
|