Files
PINA/pina/condition/input_target_condition.py
Filippo Olivo a0cbf1c44a Improve conditions and refactor dataset classes (#475)
* Reimplement conditions

* Refactor datasets and implement LabelBatch

---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
2025-03-19 17:46:36 +01:00

122 lines
4.2 KiB
Python

"""
This module contains condition classes for supervised learning tasks.
"""
import torch
from torch_geometric.data import Data
from ..label_tensor import LabelTensor
from ..graph import Graph
from .condition_interface import ConditionInterface
class InputTargetCondition(ConditionInterface):
"""
Condition for domain/equation data. This condition must be used every
time a Physics Informed or a Supervised Loss is needed in the Solver.
"""
__slots__ = ["input", "target"]
_avail_input_cls = (torch.Tensor, LabelTensor, Data, Graph, list, tuple)
_avail_output_cls = (torch.Tensor, LabelTensor, Data, Graph, list, tuple)
def __new__(cls, input, target):
"""
Instanciate the correct subclass of InputTargetCondition by checking the
type of the input and target data.
:param input: torch.Tensor or Graph/Data object containing the input
:type input: torch.Tensor or Graph or Data
:param target: torch.Tensor or Graph/Data object containing the target
:type target: torch.Tensor or Graph or Data
:return: InputTargetCondition subclass
:rtype: TensorInputTensorTargetCondition or
TensorInputGraphTargetCondition or GraphInputTensorTargetCondition
or GraphInputGraphTargetCondition
"""
if cls != InputTargetCondition:
return super().__new__(cls)
if isinstance(input, (torch.Tensor, LabelTensor)) and isinstance(
target, (torch.Tensor, LabelTensor)
):
subclass = TensorInputTensorTargetCondition
return subclass.__new__(subclass, input, target)
if isinstance(input, (torch.Tensor, LabelTensor)) and isinstance(
target, (Graph, Data, list, tuple)
):
cls._check_graph_list_consistency(target)
subclass = TensorInputGraphTargetCondition
return subclass.__new__(subclass, input, target)
if isinstance(input, (Graph, Data, list, tuple)) and isinstance(
target, (torch.Tensor, LabelTensor)
):
cls._check_graph_list_consistency(input)
subclass = GraphInputTensorTargetCondition
return subclass.__new__(subclass, input, target)
if isinstance(input, (Graph, Data, list, tuple)) and isinstance(
target, (Graph, Data, list, tuple)
):
cls._check_graph_list_consistency(input)
cls._check_graph_list_consistency(target)
subclass = GraphInputGraphTargetCondition
return subclass.__new__(subclass, input, target)
raise ValueError(
"Invalid input/target types. "
"Please provide either Data, Graph, LabelTensor or torch.Tensor "
"objects."
)
def __init__(self, input, target):
"""
Initialize the InputTargetCondition, storing the input and target data.
:param input: torch.Tensor or Graph/Data object containing the input
:type input: torch.Tensor or Graph or Data
:param target: torch.Tensor or Graph/Data object containing the target
:type target: torch.Tensor or Graph or Data
"""
super().__init__()
self._check_input_target_len(input, target)
self.input = input
self.target = target
@staticmethod
def _check_input_target_len(input, target):
if isinstance(input, (Graph, Data)) or isinstance(
target, (Graph, Data)
):
return
if len(input) != len(target):
raise ValueError(
"The input and target lists must have the same length."
)
class TensorInputTensorTargetCondition(InputTargetCondition):
"""
InputTargetCondition subclass for torch.Tensor input and target data.
"""
class TensorInputGraphTargetCondition(InputTargetCondition):
"""
InputTargetCondition subclass for torch.Tensor input and Graph/Data target
data.
"""
class GraphInputTensorTargetCondition(InputTargetCondition):
"""
InputTargetCondition subclass for Graph/Data input and torch.Tensor target
data.
"""
class GraphInputGraphTargetCondition(InputTargetCondition):
"""
InputTargetCondition subclass for Graph/Data input and target data.
"""