* Reimplement conditions * Refactor datasets and implement LabelBatch --------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
178 lines
5.8 KiB
Python
178 lines
5.8 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
|
|
import pytest
|
|
from pina import Condition, LabelTensor
|
|
from pina.solver import GAROM
|
|
from pina.condition import InputTargetCondition
|
|
from pina.problem import AbstractProblem
|
|
from pina.model import FeedForward
|
|
from pina.trainer import Trainer
|
|
from torch._dynamo.eval_frame import OptimizedModule
|
|
|
|
|
|
class TensorProblem(AbstractProblem):
|
|
input_variables = ['u_0', 'u_1']
|
|
output_variables = ['u']
|
|
conditions = {
|
|
'data': Condition(
|
|
target=torch.randn(50, 2),
|
|
input=torch.randn(50, 1))
|
|
}
|
|
|
|
|
|
# simple Generator Network
|
|
class Generator(nn.Module):
|
|
|
|
def __init__(self,
|
|
input_dimension=2,
|
|
parameters_dimension=1,
|
|
noise_dimension=2,
|
|
activation=torch.nn.SiLU):
|
|
super().__init__()
|
|
|
|
self._noise_dimension = noise_dimension
|
|
self._activation = activation
|
|
self.model = FeedForward(6*noise_dimension, input_dimension)
|
|
self.condition = FeedForward(parameters_dimension, 5 * noise_dimension)
|
|
|
|
def forward(self, param):
|
|
# uniform sampling in [-1, 1]
|
|
z = 2 * torch.rand(size=(param.shape[0], self._noise_dimension),
|
|
device=param.device,
|
|
dtype=param.dtype,
|
|
requires_grad=True) - 1
|
|
return self.model(torch.cat((z, self.condition(param)), dim=-1))
|
|
|
|
# Simple Discriminator Network
|
|
|
|
|
|
class Discriminator(nn.Module):
|
|
|
|
def __init__(self,
|
|
input_dimension=2,
|
|
parameter_dimension=1,
|
|
hidden_dimension=2,
|
|
activation=torch.nn.ReLU):
|
|
super().__init__()
|
|
|
|
self._activation = activation
|
|
self.encoding = FeedForward(input_dimension, hidden_dimension)
|
|
self.decoding = FeedForward(2*hidden_dimension, input_dimension)
|
|
self.condition = FeedForward(parameter_dimension, hidden_dimension)
|
|
|
|
def forward(self, data):
|
|
x, condition = data
|
|
encoding = self.encoding(x)
|
|
conditioning = torch.cat((encoding, self.condition(condition)), dim=-1)
|
|
decoding = self.decoding(conditioning)
|
|
return decoding
|
|
|
|
|
|
def test_constructor():
|
|
GAROM(problem=TensorProblem(),
|
|
generator=Generator(),
|
|
discriminator=Discriminator())
|
|
assert GAROM.accepted_conditions_types == (
|
|
InputTargetCondition
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
|
|
@pytest.mark.parametrize("compile", [True, False])
|
|
def test_solver_train(batch_size, compile):
|
|
solver = GAROM(problem=TensorProblem(),
|
|
generator=Generator(),
|
|
discriminator=Discriminator())
|
|
trainer = Trainer(solver=solver,
|
|
max_epochs=2,
|
|
accelerator='cpu',
|
|
batch_size=batch_size,
|
|
train_size=1.,
|
|
test_size=0.,
|
|
val_size=0.,
|
|
compile=compile)
|
|
trainer.train()
|
|
if trainer.compile:
|
|
assert (all([isinstance(model, OptimizedModule)
|
|
for model in solver.models]))
|
|
|
|
|
|
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
|
|
@pytest.mark.parametrize("compile", [True, False])
|
|
def test_solver_validation(batch_size, compile):
|
|
solver = GAROM(problem=TensorProblem(),
|
|
generator=Generator(),
|
|
discriminator=Discriminator())
|
|
|
|
trainer = Trainer(solver=solver,
|
|
max_epochs=2,
|
|
accelerator='cpu',
|
|
batch_size=batch_size,
|
|
train_size=0.9,
|
|
val_size=0.1,
|
|
test_size=0.,
|
|
compile=compile)
|
|
trainer.train()
|
|
if trainer.compile:
|
|
assert (all([isinstance(model, OptimizedModule)
|
|
for model in solver.models]))
|
|
|
|
|
|
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
|
|
@pytest.mark.parametrize("compile", [True, False])
|
|
def test_solver_test(batch_size, compile):
|
|
solver = GAROM(problem=TensorProblem(),
|
|
generator=Generator(),
|
|
discriminator=Discriminator(),
|
|
)
|
|
trainer = Trainer(solver=solver,
|
|
max_epochs=2,
|
|
accelerator='cpu',
|
|
batch_size=batch_size,
|
|
train_size=0.8,
|
|
val_size=0.1,
|
|
test_size=0.1,
|
|
compile=compile)
|
|
trainer.test()
|
|
if trainer.compile:
|
|
assert (all([isinstance(model, OptimizedModule)
|
|
for model in solver.models]))
|
|
|
|
|
|
def test_train_load_restore():
|
|
dir = "tests/test_solver/tmp/"
|
|
problem = TensorProblem()
|
|
solver = GAROM(problem=TensorProblem(),
|
|
generator=Generator(),
|
|
discriminator=Discriminator(),
|
|
)
|
|
trainer = Trainer(solver=solver,
|
|
max_epochs=5,
|
|
accelerator='cpu',
|
|
batch_size=None,
|
|
train_size=0.9,
|
|
test_size=0.1,
|
|
val_size=0.,
|
|
default_root_dir=dir)
|
|
trainer.train()
|
|
|
|
# restore
|
|
new_trainer = Trainer(solver=solver, max_epochs=5, accelerator='cpu')
|
|
new_trainer.train(
|
|
ckpt_path=f'{dir}/lightning_logs/version_0/checkpoints/' +
|
|
'epoch=4-step=5.ckpt')
|
|
|
|
# loading
|
|
new_solver = GAROM.load_from_checkpoint(
|
|
f'{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt',
|
|
problem=TensorProblem(), generator=Generator(), discriminator=Discriminator())
|
|
|
|
test_pts = torch.rand(20, 1)
|
|
assert new_solver.forward(test_pts).shape == (20, 2)
|
|
assert new_solver.forward(test_pts).shape == solver.forward(test_pts).shape
|
|
|
|
# rm directories
|
|
import shutil
|
|
shutil.rmtree('tests/test_solver/tmp')
|