* Reimplement conditions * Refactor datasets and implement LabelBatch --------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
156 lines
5.0 KiB
Python
156 lines
5.0 KiB
Python
import pytest
|
|
import torch
|
|
|
|
from pina import LabelTensor, Condition
|
|
from pina.problem import TimeDependentProblem
|
|
from pina.solver import GradientPINN
|
|
from pina.model import FeedForward
|
|
from pina.trainer import Trainer
|
|
from pina.problem.zoo import (
|
|
Poisson2DSquareProblem as Poisson,
|
|
InversePoisson2DSquareProblem as InversePoisson
|
|
)
|
|
from pina.condition import (
|
|
InputTargetCondition,
|
|
InputEquationCondition,
|
|
DomainEquationCondition
|
|
)
|
|
from torch._dynamo.eval_frame import OptimizedModule
|
|
|
|
|
|
class DummyTimeProblem(TimeDependentProblem):
|
|
"""
|
|
A mock time-dependent problem for testing purposes.
|
|
"""
|
|
output_variables = ['u']
|
|
temporal_domain = None
|
|
conditions = {}
|
|
|
|
|
|
# define problems and model
|
|
problem = Poisson()
|
|
problem.discretise_domain(50)
|
|
inverse_problem = InversePoisson()
|
|
inverse_problem.discretise_domain(50)
|
|
model = FeedForward(
|
|
len(problem.input_variables),
|
|
len(problem.output_variables)
|
|
)
|
|
|
|
# add input-output condition to test supervised learning
|
|
input_pts = torch.rand(50, len(problem.input_variables))
|
|
input_pts = LabelTensor(input_pts, problem.input_variables)
|
|
output_pts = torch.rand(50, len(problem.output_variables))
|
|
output_pts = LabelTensor(output_pts, problem.output_variables)
|
|
problem.conditions['data'] = Condition(
|
|
input=input_pts,
|
|
target=output_pts
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
|
def test_constructor(problem):
|
|
with pytest.raises(ValueError):
|
|
GradientPINN(model=model, problem=DummyTimeProblem())
|
|
solver = GradientPINN(model=model, problem=problem)
|
|
|
|
assert solver.accepted_conditions_types == (
|
|
InputTargetCondition,
|
|
InputEquationCondition,
|
|
DomainEquationCondition
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
|
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
|
|
@pytest.mark.parametrize("compile", [True, False])
|
|
def test_solver_train(problem, batch_size, compile):
|
|
solver = GradientPINN(model=model, problem=problem)
|
|
trainer = Trainer(solver=solver,
|
|
max_epochs=2,
|
|
accelerator='cpu',
|
|
batch_size=batch_size,
|
|
train_size=1.,
|
|
val_size=0.,
|
|
test_size=0.,
|
|
compile=compile)
|
|
trainer.train()
|
|
if trainer.compile:
|
|
assert (isinstance(solver.model, OptimizedModule))
|
|
|
|
|
|
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
|
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
|
|
@pytest.mark.parametrize("compile", [True, False])
|
|
def test_solver_validation(problem, batch_size, compile):
|
|
solver = GradientPINN(model=model, problem=problem)
|
|
trainer = Trainer(solver=solver,
|
|
max_epochs=2,
|
|
accelerator='cpu',
|
|
batch_size=batch_size,
|
|
train_size=0.9,
|
|
val_size=0.1,
|
|
test_size=0.,
|
|
compile=compile)
|
|
trainer.train()
|
|
if trainer.compile:
|
|
assert (isinstance(solver.model, OptimizedModule))
|
|
|
|
|
|
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
|
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
|
|
@pytest.mark.parametrize("compile", [True, False])
|
|
def test_solver_test(problem, batch_size, compile):
|
|
solver = GradientPINN(model=model, problem=problem)
|
|
trainer = Trainer(solver=solver,
|
|
max_epochs=2,
|
|
accelerator='cpu',
|
|
batch_size=batch_size,
|
|
train_size=0.7,
|
|
val_size=0.2,
|
|
test_size=0.1,
|
|
compile=compile)
|
|
trainer.test()
|
|
if trainer.compile:
|
|
assert (isinstance(solver.model, OptimizedModule))
|
|
|
|
|
|
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
|
def test_train_load_restore(problem):
|
|
dir = "tests/test_solver/tmp"
|
|
problem = problem
|
|
solver = GradientPINN(model=model, problem=problem)
|
|
trainer = Trainer(solver=solver,
|
|
max_epochs=5,
|
|
accelerator='cpu',
|
|
batch_size=None,
|
|
train_size=0.7,
|
|
val_size=0.2,
|
|
test_size=0.1,
|
|
default_root_dir=dir)
|
|
trainer.train()
|
|
|
|
# restore
|
|
new_trainer = Trainer(solver=solver, max_epochs=5, accelerator='cpu')
|
|
new_trainer.train(
|
|
ckpt_path=f'{dir}/lightning_logs/version_0/checkpoints/' +
|
|
'epoch=4-step=5.ckpt')
|
|
|
|
# loading
|
|
new_solver = GradientPINN.load_from_checkpoint(
|
|
f'{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt',
|
|
problem=problem, model=model)
|
|
|
|
test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
|
|
assert new_solver.forward(test_pts).shape == (20, 1)
|
|
assert new_solver.forward(test_pts).shape == (
|
|
solver.forward(test_pts).shape
|
|
)
|
|
torch.testing.assert_close(
|
|
new_solver.forward(test_pts),
|
|
solver.forward(test_pts))
|
|
|
|
# rm directories
|
|
import shutil
|
|
shutil.rmtree('tests/test_solver/tmp')
|