Files
PINA/tests/test_operators.py
Giovanni Canali a78f44ecef Fixing Laplacian operator for vector fields (#380)
* fix laplacian and tests
2024-11-18 17:25:34 +01:00

78 lines
2.4 KiB
Python

import torch
import pytest
from pina import LabelTensor
from pina.operators import grad, div, laplacian
def func_vec(x):
return x**2
def func_scalar(x):
print('X')
x_ = x.extract(['x'])
y_ = x.extract(['y'])
mu_ = x.extract(['mu'])
return x_**2 + y_**2 + mu_**3
data = torch.rand((20, 3), requires_grad=True)
inp = LabelTensor(data, ['x', 'y', 'mu'])
labels = ['a', 'b', 'c']
tensor_v = LabelTensor(func_vec(inp), labels)
tensor_s = LabelTensor(func_scalar(inp).reshape(-1, 1), labels[0])
def test_grad_scalar_output():
grad_tensor_s = grad(tensor_s, inp)
assert grad_tensor_s.shape == inp.shape
assert grad_tensor_s.labels == [
f'd{tensor_s.labels[0]}d{i}' for i in inp.labels
]
grad_tensor_s = grad(tensor_s, inp, d=['x', 'y'])
assert grad_tensor_s.shape == (inp.shape[0], 2)
assert grad_tensor_s.labels == [
f'd{tensor_s.labels[0]}d{i}' for i in ['x', 'y']
]
def test_grad_vector_output():
grad_tensor_v = grad(tensor_v, inp)
assert grad_tensor_v.shape == (20, 9)
grad_tensor_v = grad(tensor_v, inp, d=['x', 'mu'])
assert grad_tensor_v.shape == (inp.shape[0], 6)
def test_div_vector_output():
grad_tensor_v = div(tensor_v, inp)
assert grad_tensor_v.shape == (20, 1)
grad_tensor_v = div(tensor_v, inp, components=['a', 'b'], d=['x', 'mu'])
assert grad_tensor_v.shape == (inp.shape[0], 1)
def test_laplacian_scalar_output():
laplace_tensor_s = laplacian(tensor_s, inp, components=['a'], d=['x', 'y'])
assert laplace_tensor_s.shape == tensor_s.shape
assert laplace_tensor_s.labels == [f"dd{tensor_s.labels[0]}"]
true_val = 4*torch.ones_like(laplace_tensor_s)
assert all((laplace_tensor_s - true_val == 0).flatten())
def test_laplacian_vector_output():
laplace_tensor_v = laplacian(tensor_v, inp)
assert laplace_tensor_v.shape == tensor_v.shape
assert laplace_tensor_v.labels == [
f'dd{i}' for i in tensor_v.labels
]
laplace_tensor_v = laplacian(tensor_v,
inp,
components=['a', 'b'],
d=['x', 'y'])
assert laplace_tensor_v.shape == tensor_v.extract(['a', 'b']).shape
assert laplace_tensor_v.labels == [
f'dd{i}' for i in ['a', 'b']
]
true_val = 2*torch.ones_like(tensor_v.extract(['a', 'b']))
assert all((laplace_tensor_v - true_val == 0).flatten())