Files
PINA/tests/test_data/test_data_module.py
Filippo Olivo ab6ca78d85 Simplify Graph class (#459)
* Simplifying Graph class and adjust tests

---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
2025-03-19 17:46:36 +01:00

241 lines
8.6 KiB
Python

import torch
import pytest
from pina.data import PinaDataModule
from pina.data.dataset import PinaTensorDataset, PinaGraphDataset
from pina.problem.zoo import SupervisedProblem
from pina.graph import RadiusGraph
from pina.data.data_module import DummyDataloader
from pina import Trainer
from pina.solver import SupervisedSolver
from torch_geometric.data import Batch
from torch.utils.data import DataLoader
input_tensor = torch.rand((100, 10))
output_tensor = torch.rand((100, 2))
x = torch.rand((100, 50, 10))
pos = torch.rand((100, 50, 2))
input_graph = [
RadiusGraph(x=x_, pos=pos_, radius=0.2) for x_, pos_, in zip(x, pos)
]
output_graph = torch.rand((100, 50, 10))
@pytest.mark.parametrize(
"input_, output_",
[(input_tensor, output_tensor), (input_graph, output_graph)],
)
def test_constructor(input_, output_):
problem = SupervisedProblem(input_=input_, output_=output_)
PinaDataModule(problem)
@pytest.mark.parametrize(
"input_, output_",
[(input_tensor, output_tensor), (input_graph, output_graph)],
)
@pytest.mark.parametrize(
"train_size, val_size, test_size", [(0.7, 0.2, 0.1), (0.7, 0.3, 0)]
)
def test_setup_train(input_, output_, train_size, val_size, test_size):
problem = SupervisedProblem(input_=input_, output_=output_)
dm = PinaDataModule(
problem, train_size=train_size, val_size=val_size, test_size=test_size
)
dm.setup()
assert hasattr(dm, "train_dataset")
if isinstance(input_, torch.Tensor):
assert isinstance(dm.train_dataset, PinaTensorDataset)
else:
assert isinstance(dm.train_dataset, PinaGraphDataset)
# assert len(dm.train_dataset) == int(len(input_) * train_size)
if test_size > 0:
assert hasattr(dm, "test_dataset")
assert dm.test_dataset is None
else:
assert not hasattr(dm, "test_dataset")
assert hasattr(dm, "val_dataset")
if isinstance(input_, torch.Tensor):
assert isinstance(dm.val_dataset, PinaTensorDataset)
else:
assert isinstance(dm.val_dataset, PinaGraphDataset)
# assert len(dm.val_dataset) == int(len(input_) * val_size)
@pytest.mark.parametrize(
"input_, output_",
[(input_tensor, output_tensor), (input_graph, output_graph)],
)
@pytest.mark.parametrize(
"train_size, val_size, test_size", [(0.7, 0.2, 0.1), (0.0, 0.0, 1.0)]
)
def test_setup_test(input_, output_, train_size, val_size, test_size):
problem = SupervisedProblem(input_=input_, output_=output_)
dm = PinaDataModule(
problem, train_size=train_size, val_size=val_size, test_size=test_size
)
dm.setup(stage="test")
if train_size > 0:
assert hasattr(dm, "train_dataset")
assert dm.train_dataset is None
else:
assert not hasattr(dm, "train_dataset")
if val_size > 0:
assert hasattr(dm, "val_dataset")
assert dm.val_dataset is None
else:
assert not hasattr(dm, "val_dataset")
assert hasattr(dm, "test_dataset")
if isinstance(input_, torch.Tensor):
assert isinstance(dm.test_dataset, PinaTensorDataset)
else:
assert isinstance(dm.test_dataset, PinaGraphDataset)
# assert len(dm.test_dataset) == int(len(input_) * test_size)
@pytest.mark.parametrize(
"input_, output_",
[(input_tensor, output_tensor), (input_graph, output_graph)],
)
def test_dummy_dataloader(input_, output_):
problem = SupervisedProblem(input_=input_, output_=output_)
solver = SupervisedSolver(problem=problem, model=torch.nn.Linear(10, 10))
trainer = Trainer(
solver, batch_size=None, train_size=0.7, val_size=0.3, test_size=0.0
)
dm = trainer.data_module
dm.setup()
dm.trainer = trainer
dataloader = dm.train_dataloader()
assert isinstance(dataloader, DummyDataloader)
assert len(dataloader) == 1
data = next(dataloader)
assert isinstance(data, list)
assert isinstance(data[0], tuple)
if isinstance(input_, list):
assert isinstance(data[0][1]["input_points"], Batch)
else:
assert isinstance(data[0][1]["input_points"], torch.Tensor)
assert isinstance(data[0][1]["output_points"], torch.Tensor)
dataloader = dm.val_dataloader()
assert isinstance(dataloader, DummyDataloader)
assert len(dataloader) == 1
data = next(dataloader)
assert isinstance(data, list)
assert isinstance(data[0], tuple)
if isinstance(input_, list):
assert isinstance(data[0][1]["input_points"], Batch)
else:
assert isinstance(data[0][1]["input_points"], torch.Tensor)
assert isinstance(data[0][1]["output_points"], torch.Tensor)
@pytest.mark.parametrize(
"input_, output_",
[(input_tensor, output_tensor), (input_graph, output_graph)],
)
@pytest.mark.parametrize("automatic_batching", [True, False])
def test_dataloader(input_, output_, automatic_batching):
problem = SupervisedProblem(input_=input_, output_=output_)
solver = SupervisedSolver(problem=problem, model=torch.nn.Linear(10, 10))
trainer = Trainer(
solver,
batch_size=10,
train_size=0.7,
val_size=0.3,
test_size=0.0,
automatic_batching=automatic_batching,
)
dm = trainer.data_module
dm.setup()
dm.trainer = trainer
dataloader = dm.train_dataloader()
assert isinstance(dataloader, DataLoader)
assert len(dataloader) == 7
data = next(iter(dataloader))
assert isinstance(data, dict)
if isinstance(input_, list):
assert isinstance(data["data"]["input_points"], Batch)
else:
assert isinstance(data["data"]["input_points"], torch.Tensor)
assert isinstance(data["data"]["output_points"], torch.Tensor)
dataloader = dm.val_dataloader()
assert isinstance(dataloader, DataLoader)
assert len(dataloader) == 3
data = next(iter(dataloader))
assert isinstance(data, dict)
if isinstance(input_, list):
assert isinstance(data["data"]["input_points"], Batch)
else:
assert isinstance(data["data"]["input_points"], torch.Tensor)
assert isinstance(data["data"]["output_points"], torch.Tensor)
from pina import LabelTensor
input_tensor = LabelTensor(torch.rand((100, 3)), ["u", "v", "w"])
output_tensor = LabelTensor(torch.rand((100, 3)), ["u", "v", "w"])
x = LabelTensor(torch.rand((100, 50, 3)), ["u", "v", "w"])
pos = LabelTensor(torch.rand((100, 50, 2)), ["x", "y"])
input_graph = [
RadiusGraph(x=x[i], pos=pos[i], radius=0.1) for i in range(len(x))
]
output_graph = LabelTensor(torch.rand((100, 50, 3)), ["u", "v", "w"])
@pytest.mark.parametrize(
"input_, output_",
[(input_tensor, output_tensor), (input_graph, output_graph)],
)
@pytest.mark.parametrize("automatic_batching", [True, False])
def test_dataloader_labels(input_, output_, automatic_batching):
problem = SupervisedProblem(input_=input_, output_=output_)
solver = SupervisedSolver(problem=problem, model=torch.nn.Linear(10, 10))
trainer = Trainer(
solver,
batch_size=10,
train_size=0.7,
val_size=0.3,
test_size=0.0,
automatic_batching=automatic_batching,
)
dm = trainer.data_module
dm.setup()
dm.trainer = trainer
dataloader = dm.train_dataloader()
assert isinstance(dataloader, DataLoader)
assert len(dataloader) == 7
data = next(iter(dataloader))
assert isinstance(data, dict)
if isinstance(input_, list):
assert isinstance(data["data"]["input_points"], Batch)
assert isinstance(data["data"]["input_points"].x, LabelTensor)
assert data["data"]["input_points"].x.labels == ["u", "v", "w"]
assert data["data"]["input_points"].pos.labels == ["x", "y"]
else:
assert isinstance(data["data"]["input_points"], LabelTensor)
assert data["data"]["input_points"].labels == ["u", "v", "w"]
assert isinstance(data["data"]["output_points"], LabelTensor)
assert data["data"]["output_points"].labels == ["u", "v", "w"]
dataloader = dm.val_dataloader()
assert isinstance(dataloader, DataLoader)
assert len(dataloader) == 3
data = next(iter(dataloader))
assert isinstance(data, dict)
if isinstance(input_, list):
assert isinstance(data["data"]["input_points"], Batch)
assert isinstance(data["data"]["input_points"].x, LabelTensor)
assert data["data"]["input_points"].x.labels == ["u", "v", "w"]
assert data["data"]["input_points"].pos.labels == ["x", "y"]
else:
assert isinstance(data["data"]["input_points"], torch.Tensor)
assert isinstance(data["data"]["input_points"], LabelTensor)
assert data["data"]["input_points"].labels == ["u", "v", "w"]
assert isinstance(data["data"]["output_points"], torch.Tensor)
assert data["data"]["output_points"].labels == ["u", "v", "w"]