Files
PINA/examples/run_parametric_poisson.py
2022-02-11 16:44:37 +01:00

57 lines
1.5 KiB
Python

import argparse
import torch
from torch.nn import Softplus
from pina import PINN as pPINN
from problems.parametric_poisson import ParametricPoisson
from pina.model import FeedForward
class myFeature(torch.nn.Module):
"""
"""
def __init__(self):
super(myFeature, self).__init__()
def forward(self, x):
return torch.exp(- 2*(x['x'] - x['mu1'])**2 - 2*(x['y'] - x['mu2'])**2)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run PINA")
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("-s", "-save", action="store_true")
group.add_argument("-l", "-load", action="store_true")
parser.add_argument("id_run", help="number of run", type=int)
parser.add_argument("features", help="extra features", type=int)
args = parser.parse_args()
feat = [myFeature()] if args.features else []
poisson_problem = ParametricPoisson()
model = FeedForward(
layers=[200, 40, 10],
output_variables=poisson_problem.output_variables,
input_variables=poisson_problem.input_variables,
func=Softplus,
extra_features=feat
)
pinn = pPINN(
poisson_problem,
model,
lr=0.0006,
regularizer=1e-6,
lr_accelerate=None)
if args.s:
pinn.span_pts(2000, 'random', ['D'])
pinn.span_pts(200, 'random', ['gamma1', 'gamma2', 'gamma3', 'gamma4'])
pinn.train(10000, 10)
pinn.save_state('pina.poisson_param')
else:
pinn.load_state('pina.poisson_param')