167 lines
5.5 KiB
Python
167 lines
5.5 KiB
Python
import torch
|
|
import pytest
|
|
|
|
from pina import LabelTensor
|
|
from pina.operator import grad, div, laplacian
|
|
|
|
|
|
def func_vector(x):
|
|
return x**2
|
|
|
|
|
|
def func_scalar(x):
|
|
x_ = x.extract(["x"])
|
|
y_ = x.extract(["y"])
|
|
z_ = x.extract(["z"])
|
|
return x_**2 + y_**2 + z_**2
|
|
|
|
|
|
data = torch.rand((20, 3))
|
|
inp = LabelTensor(data, ["x", "y", "z"]).requires_grad_(True)
|
|
labels = ["a", "b", "c"]
|
|
tensor_v = LabelTensor(func_vector(inp), labels)
|
|
tensor_s = LabelTensor(func_scalar(inp).reshape(-1, 1), labels[0])
|
|
|
|
|
|
def test_grad_scalar_output():
|
|
grad_tensor_s = grad(tensor_s, inp)
|
|
true_val = 2 * inp
|
|
true_val.labels = inp.labels
|
|
assert grad_tensor_s.shape == inp.shape
|
|
assert grad_tensor_s.labels == [
|
|
f"d{tensor_s.labels[0]}d{i}" for i in inp.labels
|
|
]
|
|
assert torch.allclose(grad_tensor_s, true_val)
|
|
|
|
grad_tensor_s = grad(tensor_s, inp, d=["x", "y"])
|
|
assert grad_tensor_s.shape == (20, 2)
|
|
assert grad_tensor_s.labels == [
|
|
f"d{tensor_s.labels[0]}d{i}" for i in ["x", "y"]
|
|
]
|
|
assert torch.allclose(grad_tensor_s, true_val.extract(["x", "y"]))
|
|
|
|
|
|
def test_grad_vector_output():
|
|
grad_tensor_v = grad(tensor_v, inp)
|
|
true_val = torch.cat(
|
|
(
|
|
2 * inp.extract(["x"]),
|
|
torch.zeros_like(inp.extract(["y"])),
|
|
torch.zeros_like(inp.extract(["z"])),
|
|
torch.zeros_like(inp.extract(["x"])),
|
|
2 * inp.extract(["y"]),
|
|
torch.zeros_like(inp.extract(["z"])),
|
|
torch.zeros_like(inp.extract(["x"])),
|
|
torch.zeros_like(inp.extract(["y"])),
|
|
2 * inp.extract(["z"]),
|
|
),
|
|
dim=1,
|
|
)
|
|
assert grad_tensor_v.shape == (20, 9)
|
|
assert grad_tensor_v.labels == [
|
|
f"d{j}d{i}" for j in tensor_v.labels for i in inp.labels
|
|
]
|
|
assert torch.allclose(grad_tensor_v, true_val)
|
|
|
|
grad_tensor_v = grad(tensor_v, inp, d=["x", "y"])
|
|
true_val = torch.cat(
|
|
(
|
|
2 * inp.extract(["x"]),
|
|
torch.zeros_like(inp.extract(["y"])),
|
|
torch.zeros_like(inp.extract(["x"])),
|
|
2 * inp.extract(["y"]),
|
|
torch.zeros_like(inp.extract(["x"])),
|
|
torch.zeros_like(inp.extract(["y"])),
|
|
),
|
|
dim=1,
|
|
)
|
|
assert grad_tensor_v.shape == (inp.shape[0], 6)
|
|
assert grad_tensor_v.labels == [
|
|
f"d{j}d{i}" for j in tensor_v.labels for i in ["x", "y"]
|
|
]
|
|
assert torch.allclose(grad_tensor_v, true_val)
|
|
|
|
|
|
def test_div_vector_output():
|
|
div_tensor_v = div(tensor_v, inp)
|
|
true_val = 2 * torch.sum(inp, dim=1).reshape(-1, 1)
|
|
assert div_tensor_v.shape == (20, 1)
|
|
assert div_tensor_v.labels == [f"dadx+dbdy+dcdz"]
|
|
assert torch.allclose(div_tensor_v, true_val)
|
|
|
|
div_tensor_v = div(tensor_v, inp, components=["a", "b"], d=["x", "y"])
|
|
true_val = 2 * torch.sum(inp.extract(["x", "y"]), dim=1).reshape(-1, 1)
|
|
assert div_tensor_v.shape == (inp.shape[0], 1)
|
|
assert div_tensor_v.labels == [f"dadx+dbdy"]
|
|
assert torch.allclose(div_tensor_v, true_val)
|
|
|
|
|
|
def test_laplacian_scalar_output():
|
|
laplace_tensor_s = laplacian(tensor_s, inp)
|
|
true_val = 6 * torch.ones_like(laplace_tensor_s)
|
|
assert laplace_tensor_s.shape == tensor_s.shape
|
|
assert laplace_tensor_s.labels == [f"dd{tensor_s.labels[0]}"]
|
|
assert torch.allclose(laplace_tensor_s, true_val)
|
|
|
|
laplace_tensor_s = laplacian(tensor_s, inp, components=["a"], d=["x", "y"])
|
|
true_val = 4 * torch.ones_like(laplace_tensor_s)
|
|
assert laplace_tensor_s.shape == tensor_s.shape
|
|
assert laplace_tensor_s.labels == [f"dd{tensor_s.labels[0]}"]
|
|
assert torch.allclose(laplace_tensor_s, true_val)
|
|
|
|
|
|
def test_laplacian_vector_output():
|
|
laplace_tensor_v = laplacian(tensor_v, inp)
|
|
print(laplace_tensor_v.labels)
|
|
print(tensor_v.labels)
|
|
true_val = 2 * torch.ones_like(tensor_v)
|
|
assert laplace_tensor_v.shape == tensor_v.shape
|
|
assert laplace_tensor_v.labels == [f"dd{i}" for i in tensor_v.labels]
|
|
assert torch.allclose(laplace_tensor_v, true_val)
|
|
|
|
laplace_tensor_v = laplacian(
|
|
tensor_v, inp, components=["a", "b"], d=["x", "y"]
|
|
)
|
|
true_val = 2 * torch.ones_like(tensor_v.extract(["a", "b"]))
|
|
assert laplace_tensor_v.shape == tensor_v.extract(["a", "b"]).shape
|
|
assert laplace_tensor_v.labels == [f"dd{i}" for i in ["a", "b"]]
|
|
assert torch.allclose(laplace_tensor_v, true_val)
|
|
|
|
|
|
def test_laplacian_vector_output2():
|
|
x = LabelTensor(
|
|
torch.linspace(0, 1, 10, requires_grad=True).reshape(-1, 1),
|
|
labels=["x"],
|
|
)
|
|
y = LabelTensor(
|
|
torch.linspace(3, 4, 10, requires_grad=True).reshape(-1, 1),
|
|
labels=["y"],
|
|
)
|
|
input_ = LabelTensor(torch.cat((x, y), dim=1), labels=["x", "y"])
|
|
|
|
# Construct two scalar functions:
|
|
# u = x**2 + y**2
|
|
# v = x**2 - y**2
|
|
u = LabelTensor(
|
|
input_.extract("x") ** 2 + input_.extract("y") ** 2, labels="u"
|
|
)
|
|
v = LabelTensor(
|
|
input_.extract("x") ** 2 - input_.extract("y") ** 2, labels="v"
|
|
)
|
|
|
|
# Define a vector-valued function, whose components are u and v.
|
|
f = LabelTensor(torch.cat((u, v), dim=1), labels=["u", "v"])
|
|
|
|
# Compute the scalar laplacian of both u and v:
|
|
# Lap(u) = [4, 4, 4, ..., 4]
|
|
# Lap(v) = [0, 0, 0, ..., 0]
|
|
lap_u = laplacian(u, input_, components=["u"])
|
|
lap_v = laplacian(v, input_, components=["v"])
|
|
|
|
# Compute the laplacian of f: the two columns should correspond
|
|
# to the laplacians of u and v, respectively...
|
|
lap_f = laplacian(f, input_, components=["u", "v"])
|
|
|
|
assert torch.allclose(lap_f.extract("ddu"), lap_u)
|
|
assert torch.allclose(lap_f.extract("ddv"), lap_v)
|