Files
PINA/examples/run_wave.py
Dario Coscia ee39b39805 Examples update for v0.1 (#206)
* modify examples/problems
* modify tutorials

---------

Co-authored-by: Dario Coscia <dariocoscia@dhcp-235.eduroam.sissa.it>
Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
2023-11-17 09:51:29 +01:00

65 lines
2.0 KiB
Python

""" Run PINA on Burgers equation. """
import argparse
import torch
from torch.nn import Softplus
from pina import LabelTensor
from pina.model import FeedForward
from pina.solvers import PINN
from pina.plotter import Plotter
from pina.trainer import Trainer
from problems.wave import Wave
class HardMLP(torch.nn.Module):
def __init__(self, **kwargs):
super().__init__()
self.layers = FeedForward(**kwargs)
# here in the foward we implement the hard constraints
def forward(self, x):
hard_space = x.extract(['x'])*(1-x.extract(['x']))*x.extract(['y'])*(1-x.extract(['y']))
hard_t = torch.sin(torch.pi*x.extract(['x'])) * torch.sin(torch.pi*x.extract(['y'])) * torch.cos(torch.sqrt(torch.tensor(2.))*torch.pi*x.extract(['t']))
return hard_space * self.layers(x) * x.extract(['t']) + hard_t
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run PINA")
parser.add_argument("--load", help="directory to save or load file", type=str)
parser.add_argument("--epochs", help="extra features", type=int, default=1000)
args = parser.parse_args()
# create problem and discretise domain
wave_problem = Wave()
wave_problem.discretise_domain(1000, 'random', locations=['D', 't0', 'gamma1', 'gamma2', 'gamma3', 'gamma4'])
# create model
model = HardMLP(
layers=[40, 40, 40],
output_dimensions=len(wave_problem.output_variables),
input_dimensions=len(wave_problem.input_variables),
func=Softplus
)
# create solver
pinn = PINN(
problem=wave_problem,
model=model,
optimizer_kwargs={'lr' : 0.006}
)
# create trainer
directory = 'pina.wave'
trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=args.epochs, default_root_dir=directory)
if args.load:
pinn = PINN.load_from_checkpoint(checkpoint_path=args.load, problem=wave_problem, model=model)
plotter = Plotter()
plotter.plot(pinn)
else:
trainer.train()