Files
PINA/pina/condition/data_condition.py
FilippoOlivo be0e39a050 Doc conditions
2025-04-17 10:48:31 +02:00

87 lines
2.9 KiB
Python

"""
DataCondition class
"""
import torch
from torch_geometric.data import Data
from .condition_interface import ConditionInterface
from ..label_tensor import LabelTensor
from ..graph import Graph
class DataCondition(ConditionInterface):
"""
Condition for data. This condition must be used every
time a Unsupervised Loss is needed in the Solver. The conditionalvariable
can be passed as extra-input when the model learns a conditional
distribution
"""
__slots__ = ["input", "conditional_variables"]
_avail_input_cls = (torch.Tensor, LabelTensor, Data, Graph, list, tuple)
_avail_conditional_variables_cls = (torch.Tensor, LabelTensor)
def __new__(cls, input, conditional_variables=None):
"""
Instantiate the appropriate subclass of DataCondition based on the
types of input data.
:param input: Input data for the condition.
:type input: torch.Tensor | LabelTensor | Graph | Data
:param conditional_variables: Conditional variables for the condition.
:type conditional_variables: torch.Tensor | LabelTensor
:return: Subclass of DataCondition.
:rtype: TensorDataCondition | GraphDataCondition
:raises ValueError: If input is not of type :class:`torch.Tensor`,
:class:`LabelTensor`, :class:`Graph`, or :class:`Data`.
"""
if cls != DataCondition:
return super().__new__(cls)
if isinstance(input, (torch.Tensor, LabelTensor)):
subclass = TensorDataCondition
return subclass.__new__(subclass, input, conditional_variables)
if isinstance(input, (Graph, Data, list, tuple)):
cls._check_graph_list_consistency(input)
subclass = GraphDataCondition
return subclass.__new__(subclass, input, conditional_variables)
raise ValueError(
"Invalid input types. "
"Please provide either Data or Graph objects."
)
def __init__(self, input, conditional_variables=None):
"""
Initialize the DataCondition, storing the input and conditional
variables (if any).
:param input: Input data for the condition.
:type input: torch.Tensor or Graph or Data
:param conditional_variables: Conditional variables for the condition.
:type conditional_variables: torch.Tensor or LabelTensor
.. note::
If either `input` is composed by a list of :class:`Graph`/
:class:`Data` objects, all elements must have the same structure
(keys and data types)
"""
super().__init__()
self.input = input
self.conditional_variables = conditional_variables
class TensorDataCondition(DataCondition):
"""
DataCondition for torch.Tensor input data
"""
class GraphDataCondition(DataCondition):
"""
DataCondition for Graph/Data input data
"""