Files
PINA/tests/test_layers/test_rbf.py
Anna Ivagnes d4ced3a7d7 Add layer to perform RBF interpolation in reduced order modeling (#315)
* add RBF implementation in pytorch (in layers)
* add POD-RBF example (baseline for nonintrusive closure)
* Add POD only and POD+RBF implementation
* add POD-RBF in tutorial 8
2024-08-12 14:46:22 +02:00

86 lines
2.9 KiB
Python

import torch
import pytest
import math
from pina.model.layers.rbf_layer import RBFBlock
x = torch.linspace(-1, 1, 100)
toy_params = torch.linspace(0, 1, 10).unsqueeze(1)
toy_snapshots = torch.vstack([torch.exp(-x**2)*c for c in toy_params])
toy_params_test = torch.linspace(0, 1, 3).unsqueeze(1)
toy_snapshots_test = torch.vstack([torch.exp(-x**2)*c for c in toy_params_test])
kernels = ["linear", "thin_plate_spline", "cubic", "quintic",
"multiquadric", "inverse_multiquadric", "inverse_quadratic", "gaussian"]
noscale_invariant_kernels = ["multiquadric", "inverse_multiquadric",
"inverse_quadratic", "gaussian"]
scale_invariant_kernels = ["linear", "thin_plate_spline", "cubic", "quintic"]
def test_constructor_default():
rbf = RBFBlock()
assert rbf.kernel == "thin_plate_spline"
assert rbf.epsilon == 1
assert rbf.smoothing == 0.
@pytest.mark.parametrize("kernel", kernels)
@pytest.mark.parametrize("epsilon", [0.1, 1., 10.])
def test_constructor_epsilon(kernel, epsilon):
if kernel in scale_invariant_kernels:
rbf = RBFBlock(kernel=kernel)
assert rbf.kernel == kernel
assert rbf.epsilon == 1
elif kernel in noscale_invariant_kernels:
with pytest.raises(ValueError):
rbf = RBFBlock(kernel=kernel)
rbf = RBFBlock(kernel=kernel, epsilon=epsilon)
assert rbf.kernel == kernel
assert rbf.epsilon == epsilon
assert rbf.smoothing == 0.
@pytest.mark.parametrize("kernel", kernels)
@pytest.mark.parametrize("epsilon", [0.1, 1., 10.])
@pytest.mark.parametrize("degree", [2, 3, 4])
@pytest.mark.parametrize("smoothing", [1e-5, 1e-3, 1e-1])
def test_constructor_all(kernel, epsilon, degree, smoothing):
rbf = RBFBlock(kernel=kernel, epsilon=epsilon, degree=degree,
smoothing=smoothing)
assert rbf.kernel == kernel
assert rbf.epsilon == epsilon
assert rbf.degree == degree
assert rbf.smoothing == smoothing
assert rbf.y == None
assert rbf.d == None
assert rbf.powers == None
assert rbf._shift == None
assert rbf._scale == None
assert rbf._coeffs == None
def test_fit():
rbf = RBFBlock()
rbf.fit(toy_params, toy_snapshots)
ndim = toy_params.shape[1]
torch.testing.assert_close(rbf.y, toy_params)
torch.testing.assert_close(rbf.d, toy_snapshots)
assert rbf.powers.shape == (math.comb(rbf.degree+ndim, ndim), ndim)
assert rbf._shift.shape == (ndim,)
assert rbf._scale.shape == (ndim,)
assert rbf._coeffs.shape == (rbf.powers.shape[0]+toy_snapshots.shape[0], toy_snapshots.shape[1])
def test_forward():
rbf = RBFBlock()
rbf.fit(toy_params, toy_snapshots)
c = rbf(toy_params)
assert c.shape == toy_snapshots.shape
torch.testing.assert_close(c, toy_snapshots)
def test_forward_unseen_parameters():
rbf = RBFBlock()
rbf.fit(toy_params, toy_snapshots)
c = rbf(toy_params_test)
assert c.shape == toy_snapshots_test.shape
torch.testing.assert_close(c, toy_snapshots_test)