Files
PINA/tests/test_model/test_fnn.py
2024-02-21 09:46:42 +01:00

47 lines
1.2 KiB
Python

import torch
import pytest
from pina.model import FeedForward
data = torch.rand((20, 3))
input_vars = 3
output_vars = 4
def test_constructor():
FeedForward(input_vars, output_vars)
FeedForward(input_vars, output_vars, inner_size=10, n_layers=20)
FeedForward(input_vars, output_vars, layers=[10, 20, 5, 2])
FeedForward(input_vars,
output_vars,
layers=[10, 20, 5, 2],
func=torch.nn.ReLU)
FeedForward(input_vars,
output_vars,
layers=[10, 20, 5, 2],
func=[torch.nn.ReLU, torch.nn.ReLU, None, torch.nn.Tanh])
def test_constructor_wrong():
with pytest.raises(RuntimeError):
FeedForward(input_vars,
output_vars,
layers=[10, 20, 5, 2],
func=[torch.nn.ReLU, torch.nn.ReLU])
def test_forward():
dim_in, dim_out = 3, 2
fnn = FeedForward(dim_in, dim_out)
output_ = fnn(data)
assert output_.shape == (data.shape[0], dim_out)
def test_backward():
dim_in, dim_out = 3, 2
fnn = FeedForward(dim_in, dim_out)
data.requires_grad = True
output_ = fnn(data)
l=torch.mean(output_)
l.backward()
assert data._grad.shape == torch.Size([20,3])