Documentation for operator.py, span.py, plotter.py. Co-authored-by: Dario Coscia <dariocoscia@dhcp-128.eduroam.sissa.it>
216 lines
7.5 KiB
Python
216 lines
7.5 KiB
Python
""" Module for plotting. """
|
|
import matplotlib
|
|
# matplotlib.use('Qt5Agg')
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import torch
|
|
|
|
from pina import LabelTensor
|
|
from pina import PINN
|
|
from .problem import SpatialProblem, TimeDependentProblem
|
|
#from pina.tdproblem1d import TimeDepProblem1D
|
|
|
|
|
|
class Plotter:
|
|
"""
|
|
Implementation of a plotter class, for easy visualizations.
|
|
"""
|
|
|
|
def plot_samples(self, pinn, variables=None):
|
|
"""
|
|
Plot a sample of solution.
|
|
|
|
:param pinn: the PINN object.
|
|
:type pinn: PINN
|
|
:param variables: pinn variable domains: spatial or temporal,
|
|
defaults to None.
|
|
:type variables: str, optional
|
|
|
|
:Example:
|
|
>>> plotter = Plotter()
|
|
>>> plotter.plot_samples(pinn=pinn, variables='spatial')
|
|
"""
|
|
|
|
if variables is None:
|
|
variables = pinn.problem.domain.variables
|
|
elif variables == 'spatial':
|
|
variables = pinn.problem.spatial_domain.variables
|
|
elif variables == 'temporal':
|
|
variables = pinn.problem.temporal_domain.variables
|
|
|
|
if len(variables) not in [1, 2, 3]:
|
|
raise ValueError
|
|
|
|
fig = plt.figure()
|
|
proj = '3d' if len(variables) == 3 else None
|
|
ax = fig.add_subplot(projection=proj)
|
|
for location in pinn.input_pts:
|
|
coords = pinn.input_pts[location].extract(variables).T.detach()
|
|
if coords.shape[0] == 1: # 1D samples
|
|
ax.plot(coords[0], torch.zeros(coords[0].shape), '.',
|
|
label=location)
|
|
else:
|
|
ax.plot(*coords, '.', label=location)
|
|
|
|
ax.set_xlabel(variables[0])
|
|
try:
|
|
ax.set_ylabel(variables[1])
|
|
except:
|
|
pass
|
|
|
|
try:
|
|
ax.set_zlabel(variables[2])
|
|
except:
|
|
pass
|
|
|
|
plt.legend()
|
|
plt.show()
|
|
|
|
def _1d_plot(self, pts, pred, method, truth_solution=None, **kwargs):
|
|
"""Plot solution for one dimensional function
|
|
|
|
:param pts: Points to plot the solution.
|
|
:type pts: torch.Tensor
|
|
:param pred: PINN solution evaluated at 'pts'.
|
|
:type pred: torch.Tensor
|
|
:param method: not used, kept for code compatibility
|
|
:type method: None
|
|
:param truth_solution: Real solution evaluated at 'pts',
|
|
defaults to None.
|
|
:type truth_solution: torch.Tensor, optional
|
|
"""
|
|
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8, 8))
|
|
|
|
ax.plot(pts, pred.detach(), **kwargs)
|
|
|
|
if truth_solution:
|
|
truth_output = truth_solution(pts).float()
|
|
ax.plot(pts, truth_output.detach(), **kwargs)
|
|
|
|
plt.xlabel(pts.labels[0])
|
|
plt.ylabel(pred.labels[0])
|
|
plt.show()
|
|
|
|
def _2d_plot(self, pts, pred, v, res, method, truth_solution=None,
|
|
**kwargs):
|
|
"""Plot solution for two dimensional function
|
|
|
|
:param pts: Points to plot the solution.
|
|
:type pts: torch.Tensor
|
|
:param pred: PINN solution evaluated at 'pts'.
|
|
:type pred: torch.Tensor
|
|
:param method: matplotlib method to plot 2-dimensional data,
|
|
see https://matplotlib.org/stable/api/axes_api.html for
|
|
reference.
|
|
:type method: str
|
|
:param truth_solution: Real solution evaluated at 'pts',
|
|
defaults to None.
|
|
:type truth_solution: torch.Tensor, optional
|
|
"""
|
|
|
|
grids = [p_.reshape(res, res) for p_ in pts.extract(v).cpu().T]
|
|
|
|
pred_output = pred.reshape(res, res)
|
|
if truth_solution:
|
|
truth_output = truth_solution(pts).float().reshape(res, res)
|
|
fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(16, 6))
|
|
|
|
cb = getattr(ax[0], method)(
|
|
*grids, pred_output.cpu().detach(), **kwargs)
|
|
fig.colorbar(cb, ax=ax[0])
|
|
cb = getattr(ax[1], method)(
|
|
*grids, truth_output.cpu().detach(), **kwargs)
|
|
fig.colorbar(cb, ax=ax[1])
|
|
cb = getattr(ax[2], method)(*grids,
|
|
(truth_output-pred_output).cpu().detach(),
|
|
**kwargs)
|
|
fig.colorbar(cb, ax=ax[2])
|
|
else:
|
|
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8, 6))
|
|
cb = getattr(ax, method)(
|
|
*grids, pred_output.cpu().detach(), **kwargs)
|
|
fig.colorbar(cb, ax=ax)
|
|
|
|
def plot(self, pinn, components=None, fixed_variables={}, method='contourf',
|
|
res=256, filename=None, **kwargs):
|
|
"""
|
|
Plot sample of PINN output.
|
|
|
|
:param pinn: the PINN object.
|
|
:type pinn: PINN
|
|
:param components: function components to plot, defaults to None.
|
|
:type components: list['str'], optional
|
|
:param fixed_variables: function variables to be kept fixed during
|
|
plotting passed as a dict where the dict-key is the variable
|
|
and the dict-value is the value to be kept fixed, defaults to {}.
|
|
:type fixed_variables: dict, optional
|
|
:param method: matplotlib method to plot the solution,
|
|
defaults to 'contourf'.
|
|
:type method: str, optional
|
|
:param res: number of points used for plotting in each axis,
|
|
defaults to 256.
|
|
:type res: int, optional
|
|
:param filename: file name to save the plot, defaults to None
|
|
:type filename: str, optional
|
|
"""
|
|
if components is None:
|
|
components = [pinn.problem.output_variables]
|
|
v = [
|
|
var for var in pinn.problem.input_variables
|
|
if var not in fixed_variables.keys()
|
|
]
|
|
pts = pinn.problem.domain.sample(res, 'grid', variables=v)
|
|
|
|
fixed_pts = torch.ones(pts.shape[0], len(fixed_variables))
|
|
fixed_pts *= torch.tensor(list(fixed_variables.values()))
|
|
fixed_pts = fixed_pts.as_subclass(LabelTensor)
|
|
fixed_pts.labels = list(fixed_variables.keys())
|
|
|
|
pts = pts.append(fixed_pts)
|
|
pts = pts.to(device=pinn.device)
|
|
|
|
predicted_output = pinn.model(pts)
|
|
if isinstance(components, str):
|
|
predicted_output = predicted_output.extract(components)
|
|
elif callable(components):
|
|
predicted_output = components(predicted_output)
|
|
|
|
truth_solution = getattr(pinn.problem, 'truth_solution', None)
|
|
if len(v) == 1:
|
|
self._1d_plot(pts, predicted_output, method, truth_solution,
|
|
**kwargs)
|
|
elif len(v) == 2:
|
|
self._2d_plot(pts, predicted_output, v, res, method,
|
|
truth_solution, **kwargs)
|
|
|
|
if filename:
|
|
plt.title('Output {} with parameter {}'.format(components,
|
|
fixed_variables))
|
|
plt.savefig(filename)
|
|
else:
|
|
plt.show()
|
|
|
|
def plot_loss(self, pinn, label=None, log_scale=True):
|
|
"""
|
|
Plot the loss function values during traininig.
|
|
|
|
:param pinn: the PINN object.
|
|
:type pinn: PINN
|
|
:param label: matplolib label, defaults to None
|
|
:type label: str, optional
|
|
:param log_scale: use of log scale in plotting, defaults to True.
|
|
:type log_scale: bool, optional
|
|
"""
|
|
|
|
if not label:
|
|
label = str(pinn)
|
|
|
|
epochs = list(pinn.history_loss.keys())
|
|
loss = np.array(list(pinn.history_loss.values()))
|
|
if loss.ndim != 1:
|
|
loss = loss[:, 0]
|
|
|
|
plt.plot(epochs, loss, label=label)
|
|
if log_scale:
|
|
plt.yscale('log')
|