Files
PINA/tutorials/tutorial10/tutorial.py
Nicola Demo f0d68b34c7 refact
2025-03-19 17:46:33 +01:00

269 lines
12 KiB
Python
Vendored

#!/usr/bin/env python
# coding: utf-8
# # Tutorial: Averaging Neural Operator for solving Kuramoto Sivashinsky equation
#
# [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mathLab/PINA/blob/master/tutorials/tutorial10/tutorial.ipynb)
#
# In this tutorial we will build a Neural Operator using the
# `AveragingNeuralOperator` model and the `SupervisedSolver`. At the end of the
# tutorial you will be able to train a Neural Operator for learning
# the operator of time dependent PDEs.
#
#
# First of all, some useful imports. Note we use `scipy` for i/o operations.
#
# In[1]:
## routine needed to run the notebook on Google Colab
try:
import google.colab
IN_COLAB = True
except:
IN_COLAB = False
if IN_COLAB:
get_ipython().system('pip install "pina-mathlab"')
# get the data
get_ipython().system('mkdir "data"')
get_ipython().system('wget "https://github.com/mathLab/PINA/raw/refs/heads/master/tutorials/tutorial10/data/Data_KS.mat" -O "data/Data_KS.mat"')
get_ipython().system('wget "https://github.com/mathLab/PINA/raw/refs/heads/master/tutorials/tutorial10/data/Data_KS2.mat" -O "data/Data_KS2.mat"')
import torch
import matplotlib.pyplot as plt
plt.style.use('tableau-colorblind10')
from scipy import io
from pina import Condition, LabelTensor
from pina.problem import AbstractProblem
from pina.model import AveragingNeuralOperator
from pina.solvers import SupervisedSolver
from pina.trainer import Trainer
# ## Data Generation
#
# We will focus on solving a specific PDE, the **Kuramoto Sivashinsky** (KS) equation.
# The KS PDE is a fourth-order nonlinear PDE with the following form:
#
# $$
# \frac{\partial u}{\partial t}(x,t) = -u(x,t)\frac{\partial u}{\partial x}(x,t)- \frac{\partial^{4}u}{\partial x^{4}}(x,t) - \frac{\partial^{2}u}{\partial x^{2}}(x,t).
# $$
#
# In the above $x\in \Omega=[0, 64]$ represents a spatial location, $t\in\mathbb{T}=[0,50]$ the time and $u(x, t)$ is the value of the function $u:\Omega \times\mathbb{T}\in\mathbb{R}$. We indicate with $\mathbb{U}$ a suitable space for $u$, i.e. we have that the solution $u\in\mathbb{U}$.
#
#
# We impose Dirichlet boundary conditions on the derivative of $u$ on the border of the domain $\partial \Omega$
# $$
# \frac{\partial u}{\partial x}(x,t)=0 \quad \forall (x,t)\in \partial \Omega\times\mathbb{T}.
# $$
#
# Initial conditions are sampled from a distribution over truncated Fourier series with random coefficients
# $\{A_k, \ell_k, \phi_k\}_k$ as
# $$
# u(x,0) = \sum_{k=1}^N A_k \sin(2 \pi \ell_k x / L + \phi_k) \ ,
# $$
#
# where $A_k \in [-0.4, -0.3]$, $\ell_k = 2$, $\phi_k = 2\pi \quad \forall k=1,\dots,N$.
#
#
# We have already generated some data for differenti initial conditions, and our objective will
# be to build a Neural Operator that, given $u(x, t)$ will output $u(x, t+\delta)$, where
# $\delta$ is a fixed time step. We will come back on the Neural Operator architecture, for now
# we first need to import the data.
#
# **Note:**
# *The numerical integration is obtained by using pseudospectral method for spatial derivative discratization and
# implicit Runge Kutta 5 for temporal dynamics.*
#
# In[2]:
# load data
data=io.loadmat("dat/Data_KS.mat")
# converting to label tensor
initial_cond_train = LabelTensor(torch.tensor(data['initial_cond_train'], dtype=torch.float), ['t','x','u0'])
initial_cond_test = LabelTensor(torch.tensor(data['initial_cond_test'], dtype=torch.float), ['t','x','u0'])
sol_train = LabelTensor(torch.tensor(data['sol_train'], dtype=torch.float), ['u'])
sol_test = LabelTensor(torch.tensor(data['sol_test'], dtype=torch.float), ['u'])
print('Data Loaded')
print(f' shape initial condition: {initial_cond_train.shape}')
print(f' shape solution: {sol_train.shape}')
# The data are saved in the form `B \times N \times D`, where `B` is the batch_size
# (basically how many initial conditions we sample), `N` the number of points in the mesh
# (which is the product of the discretization in `x` timese the one in `t`), and
# `D` the dimension of the problem (in this case we have three variables `[u, t, x]`).
#
# We are now going to plot some trajectories!
# In[3]:
# helper function
def plot_trajectory(coords, real, no_sol=None):
# find the x-t shapes
dim_x = len(torch.unique(coords.extract('x')))
dim_t = len(torch.unique(coords.extract('t')))
# if we don't have the Neural Operator solution we simply plot the real one
if no_sol is None:
fig, axs = plt.subplots(1, 1, figsize=(15, 5), sharex=True, sharey=True)
c = axs.imshow(real.reshape(dim_t, dim_x).T.detach(),extent=[0, 50, 0, 64], cmap='PuOr_r', aspect='auto')
axs.set_title('Real solution')
fig.colorbar(c, ax=axs)
axs.set_xlabel('t')
axs.set_ylabel('x')
# otherwise we plot the real one, the Neural Operator one, and their difference
else:
fig, axs = plt.subplots(1, 3, figsize=(15, 5), sharex=True, sharey=True)
axs[0].imshow(real.reshape(dim_t, dim_x).T.detach(),extent=[0, 50, 0, 64], cmap='PuOr_r', aspect='auto')
axs[0].set_title('Real solution')
axs[1].imshow(no_sol.reshape(dim_t, dim_x).T.detach(),extent=[0, 50, 0, 64], cmap='PuOr_r', aspect='auto')
axs[1].set_title('NO solution')
c = axs[2].imshow((real - no_sol).abs().reshape(dim_t, dim_x).T.detach(),extent=[0, 50, 0, 64], cmap='PuOr_r', aspect='auto')
axs[2].set_title('Absolute difference')
fig.colorbar(c, ax=axs.ravel().tolist())
for ax in axs:
ax.set_xlabel('t')
ax.set_ylabel('x')
plt.show()
# a sample trajectory (we use the sample 5, feel free to change)
sample_number = 20
plot_trajectory(coords=initial_cond_train[sample_number].extract(['x', 't']),
real=sol_train[sample_number].extract('u'))
# As we can see, as the time progresses the solution becomes chaotic, which makes
# it really hard to learn! We will now focus on building a Neural Operator using the
# `SupervisedSolver` class to tackle the problem.
#
# ## Averaging Neural Operator
#
# We will build a neural operator $\texttt{NO}$ which takes the solution at time $t=0$ for any $x\in\Omega$,
# the time $(t)$ at which we want to compute the solution, and gives back the solution to the KS equation $u(x, t)$, mathematically:
# $$
# \texttt{NO}_\theta : \mathbb{U} \rightarrow \mathbb{U},
# $$
# such that
# $$
# \texttt{NO}_\theta[u(t=0)](x, t) \rightarrow u(x, t).
# $$
#
# There are many ways on approximating the following operator, e.g. by 2D [FNO](https://mathlab.github.io/PINA/_rst/models/fno.html) (for regular meshes),
# a [DeepOnet](https://mathlab.github.io/PINA/_rst/models/deeponet.html), [Continuous Convolutional Neural Operator](https://mathlab.github.io/PINA/_rst/layers/convolution.html),
# [MIONet](https://mathlab.github.io/PINA/_rst/models/mionet.html).
# In this tutorial we will use the *Averaging Neural Operator* presented in [*The Nonlocal Neural Operator: Universal Approximation*](https://arxiv.org/abs/2304.13221)
# which is a [Kernel Neural Operator](https://mathlab.github.io/PINA/_rst/models/base_no.html) with integral kernel:
#
# $$
# K(v) = \sigma\left(Wv(x) + b + \frac{1}{|\Omega|}\int_\Omega v(y)dy\right)
# $$
#
# where:
#
# * $v(x)\in\mathbb{R}^{\rm{emb}}$ is the update for a function $v$ with $\mathbb{R}^{\rm{emb}}$ the embedding (hidden) size
# * $\sigma$ is a non-linear activation
# * $W\in\mathbb{R}^{\rm{emb}\times\rm{emb}}$ is a tunable matrix.
# * $b\in\mathbb{R}^{\rm{emb}}$ is a tunable bias.
#
# If PINA many Kernel Neural Operators are already implemented, and the modular componets of the [Kernel Neural Operator](https://mathlab.github.io/PINA/_rst/models/base_no.html) class permits to create new ones by composing base kernel layers.
#
# **Note:*** We will use the already built class* `AveragingNeuralOperator`, *as constructive excercise try to use the* [KernelNeuralOperator](https://mathlab.github.io/PINA/_rst/models/base_no.html) *class for building a kernel neural operator from scratch. You might employ the different layers that we have in pina, e.g.* [FeedForward](https://mathlab.github.io/PINA/_rst/models/fnn.html), *and* [AveragingNeuralOperator](https://mathlab.github.io/PINA/_rst/layers/avno_layer.html) *layers*.
# In[4]:
class SIREN(torch.nn.Module):
def forward(self, x):
return torch.sin(x)
embedding_dimesion = 40 # hyperparameter embedding dimension
input_dimension = 3 # ['u', 'x', 't']
number_of_coordinates = 2 # ['x', 't']
lifting_net = torch.nn.Linear(input_dimension, embedding_dimesion) # simple linear layers for lifting and projecting nets
projecting_net = torch.nn.Linear(embedding_dimesion + number_of_coordinates, 1)
model = AveragingNeuralOperator(lifting_net=lifting_net,
projecting_net=projecting_net,
coordinates_indices=['x', 't'],
field_indices=['u0'],
n_layers=4,
func=SIREN
)
# Super easy! Notice that we use the `SIREN` activation function, more on [Implicit Neural Representations with Periodic Activation Functions](https://arxiv.org/abs/2006.09661).
#
# ## Solving the KS problem
#
# We will now focus on solving the KS equation using the `SupervisedSolver` class
# and the `AveragingNeuralOperator` model. As done in the [FNO tutorial](https://github.com/mathLab/PINA/blob/master/tutorials/tutorial5/tutorial.ipynb) we now create the `NeuralOperatorProblem` class with `AbstractProblem`.
# In[6]:
# expected running time ~ 1 minute
class NeuralOperatorProblem(AbstractProblem):
input_variables = initial_cond_train.labels
output_variables = sol_train.labels
conditions = {'data' : Condition(input_points=initial_cond_train,
output_points=sol_train)}
# initialize problem
problem = NeuralOperatorProblem()
# initialize solver
solver = SupervisedSolver(problem=problem, model=model,optimizer_kwargs={"lr":0.001})
# train, only CPU and avoid model summary at beginning of training (optional)
trainer = Trainer(solver=solver, max_epochs=40, accelerator='cpu', enable_model_summary=False, log_every_n_steps=-1, batch_size=5) # we train on CPU and avoid model summary at beginning of training (optional)
trainer.train()
# We can now see some plots for the solutions
# In[7]:
sample_number = 2
no_sol = solver(initial_cond_test)
plot_trajectory(coords=initial_cond_test[sample_number].extract(['x', 't']),
real=sol_test[sample_number].extract('u'),
no_sol=no_sol[5])
# As we can see we can obtain nice result considering the small trainint time and the difficulty of the problem!
# Let's see how the training and testing error:
# In[8]:
from pina.loss.loss_interface import PowerLoss
error_metric = PowerLoss(p=2) # we use the MSE loss
with torch.no_grad():
no_sol_train = solver(initial_cond_train)
err_train = error_metric(sol_train.extract('u'), no_sol_train).mean() # we average the error over trajectories
no_sol_test = solver(initial_cond_test)
err_test = error_metric(sol_test.extract('u'),no_sol_test).mean() # we average the error over trajectories
print(f'Training error: {float(err_train):.3f}')
print(f'Testing error: {float(err_test):.3f}')
# as we can see the error is pretty small, which agrees with what we can see from the previous plots.
# ## What's next?
#
# Now you know how to solve a time dependent neural operator problem in **PINA**! There are multiple directions you can go now:
#
# 1. Train the network for longer or with different layer sizes and assert the finaly accuracy
#
# 2. We left a more challenging dataset [Data_KS2.mat](dat/Data_KS2.mat) where $A_k \in [-0.5, 0.5]$, $\ell_k \in [1, 2, 3]$, $\phi_k \in [0, 2\pi]$ for loger training
#
# 3. Compare the performance between the different neural operators (you can even try to implement your favourite one!)