Files
PINA/pina/trainer.py
2025-03-19 17:46:34 +01:00

104 lines
3.6 KiB
Python

""" Trainer module. """
import torch
import pytorch_lightning
from .utils import check_consistency
from .data import PinaDataModule
from .solvers.solver import SolverInterface
class Trainer(pytorch_lightning.Trainer):
def __init__(self, solver, batch_size=None, train_size=.7, test_size=.2,
eval_size=.1, **kwargs):
"""
PINA Trainer class for costumizing every aspect of training via flags.
:param solver: A pina:class:`SolverInterface` solver for the differential problem.
:type solver: SolverInterface
:param batch_size: How many samples per batch to load. If ``batch_size=None`` all
samples are loaded and data are not batched, defaults to None.
:type batch_size: int | None
:Keyword Arguments:
The additional keyword arguments specify the training setup
and can be choosen from the `pytorch-lightning
Trainer API <https://lightning.ai/docs/pytorch/stable/common/trainer.html#trainer-class-api>`_
"""
super().__init__(**kwargs)
# check inheritance consistency for solver and batch size
check_consistency(solver, SolverInterface)
if batch_size is not None:
check_consistency(batch_size, int)
self.train_size = train_size
self.test_size = test_size
self.eval_size = eval_size
self.solver = solver
self.batch_size = batch_size
self._create_loader()
self._move_to_device()
def _move_to_device(self):
device = self._accelerator_connector._parallel_devices[0]
# move parameters to device
pb = self.solver.problem
if hasattr(pb, "unknown_parameters"):
for key in pb.unknown_parameters:
pb.unknown_parameters[key] = torch.nn.Parameter(
pb.unknown_parameters[key].data.to(device)
)
def _create_loader(self):
"""
This method is used here because is resampling is needed
during training, there is no need to define to touch the
trainer dataloader, just call the method.
"""
if not self.solver.problem.collector.full:
error_message = '\n'.join(
[
f"""{" " * 13} ---> Condition {key} {"sampled" if value else
"not sampled"}"""
for key, value in
self._solver.problem.collector._is_conditions_ready.items()
]
)
raise RuntimeError('Cannot create Trainer if not all conditions '
'are sampled. The Trainer got the following:\n'
f'{error_message}')
devices = self._accelerator_connector._parallel_devices
if len(devices) > 1:
raise RuntimeError("Parallel training is not supported yet.")
device = devices[0]
data_module = PinaDataModule(problem=self.solver.problem, device=device,
train_size=self.train_size,
test_size=self.test_size,
eval_size=self.eval_size)
data_module.setup()
self._loader = data_module.train_dataloader()
def train(self, **kwargs):
"""
Train the solver method.
"""
return super().fit(
self.solver, train_dataloaders=self._loader, **kwargs
)
@property
def solver(self):
"""
Returning trainer solver.
"""
return self._solver
@solver.setter
def solver(self, solver):
self._solver = solver