Files
PINA/examples/run_poisson.py
2021-11-29 15:29:00 +01:00

71 lines
2.0 KiB
Python

import sys
import numpy as np
import torch
import argparse
from pina.pinn import PINN
from pina.ppinn import ParametricPINN as pPINN
from pina.label_tensor import LabelTensor
from torch.nn import ReLU, Tanh, Softplus
from problems.poisson2D import Poisson2DProblem as Poisson2D
from pina.deep_feed_forward import DeepFeedForward
from pina.adaptive_functions import AdaptiveSin, AdaptiveCos, AdaptiveTanh
class myFeature(torch.nn.Module):
"""
Feature: sin(x)
"""
def __init__(self):
super(myFeature, self).__init__()
def forward(self, x):
return torch.sin(x[:, 0]*torch.pi) * torch.sin(x[:, 1]*torch.pi)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run PINA")
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("-s", "-save", action="store_true")
group.add_argument("-l", "-load", action="store_true")
parser.add_argument("id_run", help="number of run", type=int)
parser.add_argument("features", help="extra features", type=int)
args = parser.parse_args()
feat = [myFeature()] if args.features else []
poisson_problem = Poisson2D()
model = DeepFeedForward(
layers=[10, 10],
output_variables=poisson_problem.output_variables,
input_variables=poisson_problem.input_variables,
func=Softplus,
extra_features=feat
)
pinn = PINN(
poisson_problem,
model,
lr=0.003,
error_norm='mse',
regularizer=1e-8,
lr_accelerate=None)
if args.s:
pinn.span_pts(10, 'grid', ['D'])
pinn.span_pts(10, 'grid', ['gamma1', 'gamma2', 'gamma3', 'gamma4'])
#pinn.plot_pts()
pinn.train(10000, 100)
with open('poisson_history_{}_{}.txt'.format(args.id_run, args.features), 'w') as file_:
for i, losses in enumerate(pinn.history):
file_.write('{} {}\n'.format(i, sum(losses).item()))
pinn.save_state('pina.poisson')
else:
pinn.load_state('pina.poisson')
pinn.plot(40)