* Modify domain by adding sample_mode, variables as property * Small change concatenate -> cat in lno/avno * Create different factory classes for conditions
148 lines
5.1 KiB
Python
148 lines
5.1 KiB
Python
import torch
|
|
import pytest
|
|
|
|
from pina.problem import SpatialProblem
|
|
from pina.operators import laplacian
|
|
from pina import LabelTensor, Condition
|
|
from pina.domain import CartesianDomain
|
|
from pina.equation.equation import Equation
|
|
from pina.equation.equation_factory import FixedValue
|
|
|
|
|
|
def laplace_equation(input_, output_):
|
|
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
|
torch.sin(input_.extract(['y']) * torch.pi))
|
|
delta_u = laplacian(output_.extract(['u']), input_)
|
|
return delta_u - force_term
|
|
|
|
|
|
my_laplace = Equation(laplace_equation)
|
|
in_ = LabelTensor(torch.tensor([[0., 1.]], requires_grad=True), ['x', 'y'])
|
|
out_ = LabelTensor(torch.tensor([[0.]], requires_grad=True), ['u'])
|
|
|
|
|
|
class Poisson(SpatialProblem):
|
|
output_variables = ['u']
|
|
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
|
|
|
conditions = {
|
|
'gamma1':
|
|
Condition(domain=CartesianDomain({
|
|
'x': [0, 1],
|
|
'y': 1
|
|
}),
|
|
equation=FixedValue(0.0)),
|
|
'gamma2':
|
|
Condition(domain=CartesianDomain({
|
|
'x': [0, 1],
|
|
'y': 0
|
|
}),
|
|
equation=FixedValue(0.0)),
|
|
'gamma3':
|
|
Condition(domain=CartesianDomain({
|
|
'x': 1,
|
|
'y': [0, 1]
|
|
}),
|
|
equation=FixedValue(0.0)),
|
|
'gamma4':
|
|
Condition(domain=CartesianDomain({
|
|
'x': 0,
|
|
'y': [0, 1]
|
|
}),
|
|
equation=FixedValue(0.0)),
|
|
'D':
|
|
Condition(domain=CartesianDomain({
|
|
'x': [0, 1],
|
|
'y': [0, 1]
|
|
}),
|
|
equation=my_laplace),
|
|
'data':
|
|
Condition(input_points=in_, output_points=out_)
|
|
}
|
|
|
|
def poisson_sol(self, pts):
|
|
return -(torch.sin(pts.extract(['x']) * torch.pi) *
|
|
torch.sin(pts.extract(['y']) * torch.pi)) / (2 * torch.pi**2)
|
|
|
|
truth_solution = poisson_sol
|
|
|
|
|
|
# make the problem
|
|
poisson_problem = Poisson()
|
|
print(poisson_problem.input_pts)
|
|
|
|
def test_discretise_domain():
|
|
n = 10
|
|
poisson_problem = Poisson()
|
|
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
|
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
|
for b in boundaries:
|
|
assert poisson_problem.input_pts[b].shape[0] == n
|
|
poisson_problem.discretise_domain(n, 'random', locations=boundaries)
|
|
for b in boundaries:
|
|
assert poisson_problem.input_pts[b].shape[0] == n
|
|
|
|
poisson_problem.discretise_domain(n, 'grid', locations=['D'])
|
|
assert poisson_problem.input_pts['D'].shape[0] == n**2
|
|
poisson_problem.discretise_domain(n, 'random', locations=['D'])
|
|
assert poisson_problem.input_pts['D'].shape[0] == n
|
|
|
|
poisson_problem.discretise_domain(n, 'latin', locations=['D'])
|
|
assert poisson_problem.input_pts['D'].shape[0] == n
|
|
|
|
poisson_problem.discretise_domain(n, 'lh', locations=['D'])
|
|
assert poisson_problem.input_pts['D'].shape[0] == n
|
|
|
|
|
|
# def test_sampling_few_variables():
|
|
# n = 10
|
|
# poisson_problem.discretise_domain(n,
|
|
# 'grid',
|
|
# locations=['D'],
|
|
# variables=['x'])
|
|
# assert poisson_problem.input_pts['D'].shape[1] == 1
|
|
# assert poisson_problem._have_sampled_points['D'] is False
|
|
|
|
|
|
def test_variables_correct_order_sampling():
|
|
n = 10
|
|
poisson_problem = Poisson()
|
|
poisson_problem.discretise_domain(n,
|
|
'grid',
|
|
locations=['D'],
|
|
variables=['x'])
|
|
poisson_problem.discretise_domain(n,
|
|
'grid',
|
|
locations=['D'],
|
|
variables=['y'])
|
|
assert poisson_problem.input_pts['D'].labels == sorted(
|
|
poisson_problem.input_variables)
|
|
|
|
poisson_problem.discretise_domain(n,
|
|
'grid',
|
|
locations=['D'])
|
|
assert poisson_problem.input_pts['D'].labels == sorted(
|
|
poisson_problem.input_variables)
|
|
|
|
poisson_problem.discretise_domain(n,
|
|
'grid',
|
|
locations=['D'],
|
|
variables=['y'])
|
|
poisson_problem.discretise_domain(n,
|
|
'grid',
|
|
locations=['D'],
|
|
variables=['x'])
|
|
assert poisson_problem.input_pts['D'].labels == sorted(
|
|
poisson_problem.input_variables)
|
|
|
|
def test_add_points():
|
|
poisson_problem = Poisson()
|
|
poisson_problem.discretise_domain(0,
|
|
'random',
|
|
locations=['D'],
|
|
variables=['x','y'])
|
|
new_pts = LabelTensor(torch.tensor([[0.5,-0.5]]),labels=['x','y'])
|
|
poisson_problem.add_points({'D': new_pts})
|
|
assert torch.isclose(poisson_problem.input_pts['D'].extract('x'),new_pts.extract('x'))
|
|
assert torch.isclose(poisson_problem.input_pts['D'].extract('y'),new_pts.extract('y'))
|