* solvers -> solver * adaptive_functions -> adaptive_function * callbacks -> callback * operators -> operator * pinns -> physics_informed_solver * layers -> block
33 lines
1.1 KiB
Python
33 lines
1.1 KiB
Python
from pina.solver import PINN
|
|
from pina.trainer import Trainer
|
|
from pina.model import FeedForward
|
|
from pina.callback.processing_callback import PINAProgressBar
|
|
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
|
|
|
|
|
|
# # make the problem
|
|
# poisson_problem = Poisson()
|
|
# boundaries = ['nil_g1', 'nil_g2', 'nil_g3', 'nil_g4']
|
|
# n = 10
|
|
# poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
|
# poisson_problem.discretise_domain(n, 'grid', locations='laplace_D')
|
|
# model = FeedForward(len(poisson_problem.input_variables),
|
|
# len(poisson_problem.output_variables))
|
|
|
|
# # make the solver
|
|
# solver = PINN(problem=poisson_problem, model=model)
|
|
|
|
|
|
# def test_progress_bar_constructor():
|
|
# PINAProgressBar(['mean'])
|
|
|
|
# def test_progress_bar_routine():
|
|
# # make the trainer
|
|
# trainer = Trainer(solver=solver,
|
|
# callback=[
|
|
# PINAProgressBar(['mean', 'laplace_D'])
|
|
# ],
|
|
# accelerator='cpu',
|
|
# max_epochs=5)
|
|
# trainer.train()
|
|
# # TODO there should be a check that the correct metrics are displayed |