improve efficiency data module
This commit is contained in:
@@ -23,8 +23,9 @@ class GraphDataModule(LightningDataModule):
|
||||
super().__init__()
|
||||
self.hf_repo = hf_repo
|
||||
self.split_name = split_name
|
||||
self.dataset = None
|
||||
self.geometry = None
|
||||
self.dataset_dict = {}
|
||||
# self.geometry = None
|
||||
self.geometry_dict = {}
|
||||
self.train_size = train_size
|
||||
self.val_size = val_size
|
||||
self.test_size = test_size
|
||||
@@ -32,20 +33,30 @@ class GraphDataModule(LightningDataModule):
|
||||
self.remove_boundary_edges = remove_boundary_edges
|
||||
|
||||
def prepare_data(self):
|
||||
hf_dataset = load_dataset(self.hf_repo, name="snapshots")[
|
||||
self.split_name
|
||||
]
|
||||
self.geometry = load_dataset(self.hf_repo, name="geometry")[
|
||||
self.split_name
|
||||
]
|
||||
self.data = [
|
||||
self._build_dataset(snapshot, geometry)
|
||||
for snapshot, geometry in tqdm(
|
||||
zip(hf_dataset, self.geometry),
|
||||
desc="Building graphs",
|
||||
total=len(hf_dataset),
|
||||
)
|
||||
]
|
||||
dataset = load_dataset(self.hf_repo, name="snapshots")[self.split_name]
|
||||
geometry = load_dataset(self.hf_repo, name="geometry")[self.split_name]
|
||||
# data = [
|
||||
# self._build_dataset(snapshot, geometry)
|
||||
# for snapshot, geometry in tqdm(
|
||||
# zip(hf_dataset, self.geometry),
|
||||
# desc="Building graphs",
|
||||
# total=len(hf_dataset),
|
||||
# )
|
||||
# ]
|
||||
|
||||
total_len = len(dataset)
|
||||
train_len = int(self.train_size * total_len)
|
||||
valid_len = int(self.val_size * total_len)
|
||||
self.dataset_dict = {
|
||||
"train": dataset.select(range(0, train_len)),
|
||||
"val": dataset.select(range(train_len, train_len + valid_len)),
|
||||
"test": dataset.select(range(train_len + valid_len, total_len)),
|
||||
}
|
||||
self.geometry_dict = {
|
||||
"train": geometry.select(range(0, train_len)),
|
||||
"val": geometry.select(range(train_len, train_len + valid_len)),
|
||||
"test": geometry.select(range(train_len + valid_len, total_len)),
|
||||
}
|
||||
|
||||
def _compute_boundary_mask(
|
||||
self, bottom_ids, right_ids, top_ids, left_ids, temperature
|
||||
@@ -132,15 +143,36 @@ class GraphDataModule(LightningDataModule):
|
||||
)
|
||||
|
||||
def setup(self, stage: str = None):
|
||||
n = len(self.data)
|
||||
train_end = int(n * self.train_size)
|
||||
val_end = train_end + int(n * self.val_size)
|
||||
print(type(self.dataset_dict["train"]))
|
||||
|
||||
if stage == "fit" or stage is None:
|
||||
self.train_data = self.data[:train_end]
|
||||
self.val_data = self.data[train_end:val_end]
|
||||
self.train_data = [
|
||||
self._build_dataset(snap, geom)
|
||||
for snap, geom in tqdm(
|
||||
zip(
|
||||
self.dataset_dict["train"], self.geometry_dict["train"]
|
||||
),
|
||||
desc="Building train graphs",
|
||||
total=len(self.dataset_dict["train"]),
|
||||
)
|
||||
]
|
||||
self.val_data = [
|
||||
self._build_dataset(snap, geom)
|
||||
for snap, geom in tqdm(
|
||||
zip(self.dataset_dict["val"], self.geometry_dict["val"]),
|
||||
desc="Building val graphs",
|
||||
total=len(self.dataset_dict["val"]),
|
||||
)
|
||||
]
|
||||
if stage == "test" or stage is None:
|
||||
self.test_data = self.data[val_end:]
|
||||
self.test_data = [
|
||||
self._build_dataset(snap, geom)
|
||||
for snap, geom in tqdm(
|
||||
zip(self.dataset_dict["test"], self.geometry_dict["test"]),
|
||||
desc="Building test graphs",
|
||||
total=len(self.dataset_dict["test"]),
|
||||
)
|
||||
]
|
||||
|
||||
def train_dataloader(self):
|
||||
return DataLoader(
|
||||
|
||||
@@ -22,8 +22,9 @@ class EncX(nn.Module):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(x_ch, hidden // 2),
|
||||
nn.SiLU(),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden // 2, hidden),
|
||||
nn.GELU(),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
@@ -35,8 +36,9 @@ class EncC(nn.Module):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(c_ch, hidden // 2),
|
||||
nn.SiLU(),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden // 2, hidden),
|
||||
nn.GELU(),
|
||||
)
|
||||
|
||||
def forward(self, c):
|
||||
@@ -48,8 +50,9 @@ class DecX(nn.Module):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(hidden, hidden // 2),
|
||||
nn.SiLU(),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden // 2, out_ch),
|
||||
nn.GELU(),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
@@ -133,18 +136,18 @@ class ConditionalGNOBlock(MessagePassing):
|
||||
# Se edge_ch==0 useremo un coefficiente apprendibile globale
|
||||
self.edge_attr_net = nn.Sequential(
|
||||
nn.Linear(edge_ch, hidden_ch),
|
||||
nn.SiLU(),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_ch, hidden_ch // 2),
|
||||
nn.SiLU(),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_ch // 2, 1),
|
||||
nn.Softplus(),
|
||||
)
|
||||
# gating dalla condizione c_ij (restituisce scalar in (0,1))
|
||||
self.c_ij_net = nn.Sequential(
|
||||
nn.Linear(hidden_ch, hidden_ch),
|
||||
nn.SiLU(),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_ch, hidden_ch // 2),
|
||||
nn.SiLU(),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_ch // 2, 1),
|
||||
nn.Sigmoid(),
|
||||
)
|
||||
@@ -152,13 +155,22 @@ class ConditionalGNOBlock(MessagePassing):
|
||||
# alpha per passo (clampato tramite sigmoid)
|
||||
self.alpha_net = nn.Sequential(
|
||||
nn.Linear(2 * hidden_ch, hidden_ch),
|
||||
nn.SiLU(),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_ch, hidden_ch // 2),
|
||||
nn.SiLU(),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_ch // 2, 1),
|
||||
nn.Sigmoid(),
|
||||
)
|
||||
|
||||
self.diff_net = nn.Sequential(
|
||||
nn.Linear(hidden_ch, hidden_ch * 2),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_ch * 2, hidden_ch**2),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_ch**2, hidden_ch),
|
||||
nn.GELU(),
|
||||
)
|
||||
|
||||
# self.norm = nn.LayerNorm(hidden_ch)
|
||||
|
||||
def forward(self, x, c, edge_index, edge_attr=None):
|
||||
@@ -171,43 +183,21 @@ class ConditionalGNOBlock(MessagePassing):
|
||||
m_ij = w_ij * (x_j - x_i) * c_gate_ij
|
||||
dove w_ij = softplus(edge_attr_net(edge_attr)) >= 0
|
||||
"""
|
||||
# 1) calcola c_ij e gating da c
|
||||
c_ij = 0.5 * (c_i + c_j) # [E, H]
|
||||
c_gate = self.c_ij_net(c_ij) # [E, 1] in (0,1)
|
||||
|
||||
# 2) calcola peso scalare non-negativo per edge
|
||||
w_raw = self.edge_attr_net(edge_attr) # [E,1]
|
||||
|
||||
# softplus -> peso >= 0; aggiungo epsilon per stabilità
|
||||
w = w_raw + 1e-12 # [E,1]
|
||||
|
||||
# 3) messaggio base: differenza pesata
|
||||
w = w_raw + 1e-8
|
||||
diff = x_j - x_i # [E, H]
|
||||
m = w * diff # broadcast: [E,1] * [E,H] -> [E,H]
|
||||
|
||||
# 4) applica gating dalla condizione
|
||||
m = w * self.diff_net(diff) + diff # [E,H]
|
||||
m = m * c_gate # [E,H]
|
||||
|
||||
# Restituisco anche w (sfruttabile in update) — ma MessagePassing non ritorna extra,
|
||||
# così se vuoi degree-normalization devi calcolare i gradi prima di propagate.
|
||||
# Qui ritorno solo m: la normalizzazione per grado la faccio in update usando 'mean' aggr
|
||||
return m
|
||||
|
||||
def update(self, aggr_out, x):
|
||||
"""
|
||||
aggr_out:
|
||||
- se aggr='sum': somma delle w_ij*(x_j-x_i) incoming
|
||||
- se aggr='mean': già normalizzato sul numero di vicini (ma non per somma dei pesi)
|
||||
Qui normalizziamo implicitamente dividendo per (1 + |aggr_out|_norm) per stabilità,
|
||||
e applichiamo il passo alpha.
|
||||
TODO: doc
|
||||
"""
|
||||
# aggr_out = self.norm(aggr_out) # stabilizza la scala
|
||||
|
||||
# alpha vettoriale/scalar: [N,1]
|
||||
alpha = self.alpha_net(torch.cat([x, aggr_out], dim=-1)) # in (0,1)
|
||||
|
||||
alpha = self.alpha_net(torch.cat([x, aggr_out], dim=-1))
|
||||
x_new = x + alpha * aggr_out
|
||||
|
||||
return x_new
|
||||
|
||||
|
||||
@@ -250,10 +240,10 @@ class GatingGNO(nn.Module):
|
||||
x_ = self.dec(x)
|
||||
plot_results_fn(x_, pos, 0, batch=batch)
|
||||
for _ in range(1, unrolling_steps + 1):
|
||||
for blk in self.blocks:
|
||||
for i, blk in enumerate(self.blocks):
|
||||
x = blk(x, c, edge_index, edge_attr=edge_attr)
|
||||
if plot_results:
|
||||
x_ = self.dec(x)
|
||||
plot_results_fn(x_, pos, _, batch=batch)
|
||||
if plot_results:
|
||||
x_ = self.dec(x)
|
||||
plot_results_fn(x_, pos, i * _, batch=batch)
|
||||
|
||||
return self.dec(x)
|
||||
|
||||
@@ -111,6 +111,7 @@ class GraphSolver(LightningModule):
|
||||
unrolling_steps=self.unrolling_steps,
|
||||
batch=batch.batch,
|
||||
pos=batch.pos,
|
||||
plot_results=True,
|
||||
)
|
||||
loss = self._compute_loss(y_pred, y)
|
||||
self._log_loss(loss, batch, "test")
|
||||
|
||||
Reference in New Issue
Block a user