fix model
This commit is contained in:
@@ -7,6 +7,7 @@ from matplotlib.tri import Triangulation
|
||||
from .model.finite_difference import FiniteDifferenceStep
|
||||
import os
|
||||
|
||||
|
||||
def import_class(class_path: str):
|
||||
module_path, class_name = class_path.rsplit(".", 1) # split last dot
|
||||
module = importlib.import_module(module_path) # import the module
|
||||
@@ -14,7 +15,7 @@ def import_class(class_path: str):
|
||||
return cls
|
||||
|
||||
|
||||
def _plot_mesh(pos_, y_, y_pred_, y_true_ ,batch, i, batch_idx):
|
||||
def _plot_mesh(pos_, y_, y_pred_, y_true_, batch, i, batch_idx):
|
||||
for j in [0, 10, 20, 30]:
|
||||
idx = (batch == j).nonzero(as_tuple=True)[0]
|
||||
y = y_[idx].detach().cpu()
|
||||
@@ -49,6 +50,7 @@ def _plot_mesh(pos_, y_, y_pred_, y_true_ ,batch, i, batch_idx):
|
||||
plt.savefig(name, dpi=72)
|
||||
plt.close()
|
||||
|
||||
|
||||
def _plot_losses(losses, batch_idx):
|
||||
folder = f"{batch_idx:02d}_images"
|
||||
plt.figure()
|
||||
@@ -74,8 +76,8 @@ class GraphSolver(LightningModule):
|
||||
super().__init__()
|
||||
self.model = import_class(model_class_path)(**model_init_args)
|
||||
# for param in self.model.parameters():
|
||||
# print(f"Param: {param.shape}, Grad: {param.grad}")
|
||||
# print(f"Param: {param[0]}")
|
||||
# print(f"Param: {param.shape}, Grad: {param.grad}")
|
||||
# print(f"Param: {param[0]}")
|
||||
self.loss = loss if loss is not None else torch.nn.MSELoss()
|
||||
self.unrolling_steps = unrolling_steps
|
||||
|
||||
@@ -101,29 +103,36 @@ class GraphSolver(LightningModule):
|
||||
return (0.5 * (c[edge_index[0]] + c[edge_index[1]])).squeeze()
|
||||
|
||||
def _compute_model_steps(
|
||||
self, x, edge_index, edge_attr, boundary_mask, boundary_values
|
||||
):
|
||||
out = self.model(x, edge_index, edge_attr)
|
||||
self,
|
||||
x,
|
||||
edge_index,
|
||||
edge_attr,
|
||||
boundary_mask,
|
||||
boundary_values,
|
||||
conductivity,
|
||||
):
|
||||
out = self.model(x, edge_index, edge_attr, conductivity)
|
||||
out[boundary_mask] = boundary_values.unsqueeze(-1)
|
||||
# print(torch.min(out), torch.max(out))
|
||||
return out
|
||||
|
||||
def _preprocess_batch(self, batch: Batch):
|
||||
x, y, c, edge_index, edge_attr = (
|
||||
x, y, c, edge_index, edge_attr, nodal_area = (
|
||||
batch.x,
|
||||
batch.y,
|
||||
batch.c,
|
||||
batch.edge_index,
|
||||
batch.edge_attr,
|
||||
batch.nodal_area,
|
||||
)
|
||||
edge_attr = 1 / edge_attr
|
||||
c_ij = self._compute_c_ij(c, edge_index)
|
||||
edge_attr = edge_attr * c_ij
|
||||
# edge_attr = edge_attr / torch.max(edge_attr)
|
||||
return x, y, edge_index, edge_attr
|
||||
conductivity = self._compute_c_ij(c, edge_index)
|
||||
edge_attr = edge_attr * conductivity
|
||||
return x, y, edge_index, edge_attr, conductivity
|
||||
|
||||
def training_step(self, batch: Batch):
|
||||
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
x, y, edge_index, edge_attr, conductivity = self._preprocess_batch(
|
||||
batch
|
||||
)
|
||||
# deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||
losses = []
|
||||
# print(x.shape, y.shape)
|
||||
@@ -160,12 +169,13 @@ class GraphSolver(LightningModule):
|
||||
# deg,
|
||||
batch.boundary_mask,
|
||||
batch.boundary_values,
|
||||
conductivity,
|
||||
)
|
||||
x = out
|
||||
# print(out.shape, y[:, i, :].shape)
|
||||
losses.append(self.loss(out.flatten(), y[:, i, :].flatten()))
|
||||
# print(self.model.scale_edge_attr.item())
|
||||
|
||||
|
||||
loss = torch.stack(losses).mean()
|
||||
# for param in self.model.parameters():
|
||||
# print(f"Param: {param.shape}, Grad: {param.grad}")
|
||||
@@ -173,26 +183,40 @@ class GraphSolver(LightningModule):
|
||||
self._log_loss(loss, batch, "train")
|
||||
return loss
|
||||
|
||||
|
||||
def validation_step(self, batch: Batch, batch_idx):
|
||||
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
x, y, edge_index, edge_attr, conductivity = self._preprocess_batch(
|
||||
batch
|
||||
)
|
||||
# deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||
losses = []
|
||||
pos = batch.pos
|
||||
for i in range(self.unrolling_steps):
|
||||
out = self._compute_model_steps(
|
||||
# torch.cat([x,pos], dim=-1),
|
||||
x,
|
||||
edge_index,
|
||||
edge_attr,
|
||||
# deg,
|
||||
batch.boundary_mask,
|
||||
batch.boundary_values,
|
||||
# torch.cat([x,pos], dim=-1),
|
||||
x,
|
||||
edge_index,
|
||||
edge_attr,
|
||||
# deg,
|
||||
batch.boundary_mask,
|
||||
batch.boundary_values,
|
||||
conductivity,
|
||||
)
|
||||
if (batch_idx == 0 and self.current_epoch % 10 == 0 and self.current_epoch > 20):
|
||||
_plot_mesh(batch.pos, x, out, y[:, i, :], batch.batch, i, self.current_epoch)
|
||||
if (
|
||||
batch_idx == 0
|
||||
and self.current_epoch % 10 == 0
|
||||
and self.current_epoch > 0
|
||||
):
|
||||
_plot_mesh(
|
||||
batch.pos,
|
||||
x,
|
||||
out,
|
||||
y[:, i, :],
|
||||
batch.batch,
|
||||
i,
|
||||
self.current_epoch,
|
||||
)
|
||||
x = out
|
||||
losses.append(self.loss(out , y[:, i, :]))
|
||||
losses.append(self.loss(out, y[:, i, :]))
|
||||
|
||||
loss = torch.stack(losses).mean()
|
||||
self._log_loss(loss, batch, "val")
|
||||
@@ -202,5 +226,5 @@ class GraphSolver(LightningModule):
|
||||
pass
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = torch.optim.AdamW(self.parameters(), lr=5e-3)
|
||||
optimizer = torch.optim.AdamW(self.parameters(), lr=1e-3)
|
||||
return optimizer
|
||||
|
||||
@@ -6,7 +6,39 @@ from torch_geometric.data import Data
|
||||
from torch_geometric.loader import DataLoader
|
||||
from torch_geometric.utils import to_undirected
|
||||
from .mesh_data import MeshData
|
||||
|
||||
# from torch.utils.data import Dataset
|
||||
from torch_geometric.utils import scatter
|
||||
|
||||
|
||||
def compute_nodal_area(edge_index, edge_attr, num_nodes):
|
||||
"""
|
||||
1. Calculates Area ~ (Min Edge Length)^2
|
||||
2. Scales by Mean so average cell has size 1.0
|
||||
"""
|
||||
row, col = edge_index
|
||||
dist = edge_attr.squeeze()
|
||||
|
||||
# 1. Get 'h' (Closest neighbor distance)
|
||||
# Using 'min' filters out diagonal connections in the quad mesh
|
||||
h = scatter(dist, col, dim=0, dim_size=num_nodes, reduce="min")
|
||||
|
||||
# 2. Estimate Raw Area
|
||||
raw_area = h.pow(2)
|
||||
|
||||
# 3. Mean Scaling (The Best Normalization)
|
||||
# This keeps values near 1.0, preserving stability AND physics ratios.
|
||||
# We detach to ensure no gradients flow here (it's static data).
|
||||
mean_val = raw_area.mean().detach()
|
||||
|
||||
# Result:
|
||||
# Small cells -> approx 0.1
|
||||
# Large cells -> approx 5.0
|
||||
# Average -> 1.0
|
||||
# nodal_area = (raw_area / mean_val).unsqueeze(-1) + 1e-6
|
||||
nodal_area = raw_area
|
||||
return nodal_area.unsqueeze(-1)
|
||||
|
||||
|
||||
class GraphDataModule(LightningDataModule):
|
||||
def __init__(
|
||||
@@ -26,7 +58,11 @@ class GraphDataModule(LightningDataModule):
|
||||
self.hf_repo = hf_repo
|
||||
self.split_name = split_name
|
||||
self.dataset_dict = {}
|
||||
self.train_dataset, self.val_dataset, self.test_dataset = None, None, None
|
||||
self.train_dataset, self.val_dataset, self.test_dataset = (
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
)
|
||||
self.unrolling_steps = start_unrolling_steps
|
||||
self.geometry_dict = {}
|
||||
self.train_size = train_size
|
||||
@@ -85,7 +121,9 @@ class GraphDataModule(LightningDataModule):
|
||||
conductivity = torch.tensor(
|
||||
geometry["conductivity"], dtype=torch.float32
|
||||
)
|
||||
temperatures = torch.tensor(snapshot["temperatures"], dtype=torch.float32)[:40]
|
||||
temperatures = torch.tensor(
|
||||
snapshot["temperatures"], dtype=torch.float32
|
||||
)[:40]
|
||||
times = torch.tensor(snapshot["times"], dtype=torch.float32)
|
||||
|
||||
pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2]
|
||||
@@ -100,16 +138,19 @@ class GraphDataModule(LightningDataModule):
|
||||
)
|
||||
|
||||
if self.build_radial_graph:
|
||||
from pina.graph import RadiusGraph
|
||||
# from pina.graph import RadiusGraph
|
||||
|
||||
if self.radius is None:
|
||||
raise ValueError("Radius must be specified for radial graph.")
|
||||
edge_index = RadiusGraph.compute_radius_graph(
|
||||
pos, radius=self.radius
|
||||
# if self.radius is None:
|
||||
# raise ValueError("Radius must be specified for radial graph.")
|
||||
# edge_index = RadiusGraph.compute_radius_graph(
|
||||
# pos, radius=self.radius
|
||||
# )
|
||||
# from torch_geometric.utils import remove_self_loops
|
||||
|
||||
# edge_index, _ = remove_self_loops(edge_index)
|
||||
raise NotImplementedError(
|
||||
"Radial graph building not implemented yet."
|
||||
)
|
||||
from torch_geometric.utils import remove_self_loops
|
||||
|
||||
edge_index, _ = remove_self_loops(edge_index)
|
||||
else:
|
||||
edge_index = torch.tensor(
|
||||
geometry["edge_index"], dtype=torch.int64
|
||||
@@ -117,31 +158,37 @@ class GraphDataModule(LightningDataModule):
|
||||
edge_index = to_undirected(edge_index, num_nodes=pos.size(0))
|
||||
|
||||
boundary_mask, boundary_values = self._compute_boundary_mask(
|
||||
bottom_ids, right_ids, top_ids, left_ids, temperatures[0,:]
|
||||
bottom_ids, right_ids, top_ids, left_ids, temperatures[0, :]
|
||||
)
|
||||
|
||||
edge_attr = torch.norm(pos[edge_index[0]] - pos[edge_index[1]], dim=1)
|
||||
nodal_area = compute_nodal_area(edge_index, edge_attr, pos.size(0))
|
||||
if self.remove_boundary_edges:
|
||||
boundary_idx = torch.unique(boundary_mask)
|
||||
edge_index_mask = ~torch.isin(edge_index[1], boundary_idx)
|
||||
edge_index = edge_index[:, edge_index_mask]
|
||||
|
||||
edge_attr = torch.norm(pos[edge_index[0]] - pos[edge_index[1]], dim=1)
|
||||
|
||||
edge_attr = edge_attr[edge_index_mask]
|
||||
n_data = temperatures.size(0) - self.unrolling_steps
|
||||
data = []
|
||||
for i in range(n_data):
|
||||
x = temperatures[i, :].unsqueeze(-1)
|
||||
y = temperatures[i + 1 : i + 1 + self.unrolling_steps, :].unsqueeze(-1).permute(1,0,2)
|
||||
data.append(MeshData(
|
||||
x=x,
|
||||
y=y,
|
||||
c=conductivity.unsqueeze(-1),
|
||||
edge_index=edge_index,
|
||||
pos=pos,
|
||||
edge_attr=edge_attr,
|
||||
boundary_mask=boundary_mask,
|
||||
boundary_values=boundary_values,
|
||||
))
|
||||
y = (
|
||||
temperatures[i + 1 : i + 1 + self.unrolling_steps, :]
|
||||
.unsqueeze(-1)
|
||||
.permute(1, 0, 2)
|
||||
)
|
||||
data.append(
|
||||
MeshData(
|
||||
x=x,
|
||||
y=y,
|
||||
c=conductivity.unsqueeze(-1),
|
||||
edge_index=edge_index,
|
||||
pos=pos,
|
||||
edge_attr=edge_attr,
|
||||
boundary_mask=boundary_mask,
|
||||
boundary_values=boundary_values,
|
||||
nodal_area=nodal_area,
|
||||
)
|
||||
)
|
||||
return data
|
||||
|
||||
def setup(self, stage: str = None):
|
||||
@@ -207,7 +254,9 @@ class GraphDataModule(LightningDataModule):
|
||||
)
|
||||
|
||||
def test_dataloader(self):
|
||||
ds = self.create_autoregressive_datasets(dataset="test", no_unrolling=True)
|
||||
ds = self.create_autoregressive_datasets(
|
||||
dataset="test", no_unrolling=True
|
||||
)
|
||||
return DataLoader(
|
||||
ds,
|
||||
batch_size=self.batch_size,
|
||||
|
||||
@@ -7,6 +7,7 @@ from matplotlib.tri import Triangulation
|
||||
from .model.finite_difference import FiniteDifferenceStep
|
||||
import os
|
||||
|
||||
|
||||
def import_class(class_path: str):
|
||||
module_path, class_name = class_path.rsplit(".", 1) # split last dot
|
||||
module = importlib.import_module(module_path) # import the module
|
||||
@@ -43,6 +44,7 @@ def _plot_mesh(pos, y, y_pred, batch, i, batch_idx):
|
||||
plt.savefig(name, dpi=72)
|
||||
plt.close()
|
||||
|
||||
|
||||
def _plot_losses(losses, batch_idx):
|
||||
folder = f"{batch_idx:02d}_images"
|
||||
plt.figure()
|
||||
|
||||
@@ -2,37 +2,39 @@ import torch
|
||||
import torch.nn as nn
|
||||
from torch_geometric.nn import MessagePassing
|
||||
|
||||
|
||||
class DiffusionLayer(MessagePassing):
|
||||
"""
|
||||
Modella: T_new = T_old + dt * Divergenza(Flusso)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
channels: int,
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
super().__init__(aggr='add', **kwargs)
|
||||
|
||||
|
||||
super().__init__(aggr="add", **kwargs)
|
||||
|
||||
self.dt = nn.Parameter(torch.tensor(1e-4))
|
||||
self.conductivity_net = nn.Sequential(
|
||||
nn.Linear(channels, channels, bias=False),
|
||||
nn.GELU(),
|
||||
nn.Linear(channels, channels, bias=False),
|
||||
)
|
||||
|
||||
|
||||
self.phys_encoder = nn.Sequential(
|
||||
nn.Linear(1, 8, bias=False),
|
||||
nn.Tanh(),
|
||||
nn.Linear(8, 1, bias=False),
|
||||
nn.Softplus()
|
||||
nn.Softplus(),
|
||||
)
|
||||
|
||||
def forward(self, x, edge_index, edge_weight):
|
||||
def forward(self, x, edge_index, edge_weight, conductivity):
|
||||
edge_weight = edge_weight.unsqueeze(-1)
|
||||
conductance = self.phys_encoder(edge_weight)
|
||||
net_flux = self.propagate(edge_index, x=x, conductance=conductance)
|
||||
return x + (net_flux * self.dt)
|
||||
return x + ((net_flux) * self.dt)
|
||||
|
||||
def message(self, x_i, x_j, conductance):
|
||||
delta = x_j - x_i
|
||||
@@ -44,7 +46,7 @@ class DiffusionLayer(MessagePassing):
|
||||
class DiffusionNet(nn.Module):
|
||||
def __init__(self, input_dim=1, output_dim=1, hidden_dim=8, n_layers=4):
|
||||
super().__init__()
|
||||
|
||||
|
||||
# Encoder: Projects input temperature to hidden feature space
|
||||
self.enc = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim, bias=True),
|
||||
@@ -57,12 +59,12 @@ class DiffusionNet(nn.Module):
|
||||
|
||||
# Scale parameters for conditioning
|
||||
self.scale_edge_attr = nn.Parameter(torch.zeros(1))
|
||||
|
||||
|
||||
# Stack of Diffusion Layers
|
||||
self.layers = torch.nn.ModuleList(
|
||||
[DiffusionLayer(hidden_dim) for _ in range(n_layers)]
|
||||
)
|
||||
|
||||
|
||||
# Decoder: Projects hidden features back to Temperature space
|
||||
self.dec = nn.Sequential(
|
||||
nn.Linear(hidden_dim, hidden_dim, bias=True),
|
||||
@@ -73,28 +75,28 @@ class DiffusionNet(nn.Module):
|
||||
|
||||
self.func = torch.nn.GELU()
|
||||
|
||||
def forward(self, x, edge_index, edge_attr):
|
||||
def forward(self, x, edge_index, edge_attr, conductivity):
|
||||
# 1. Global Residual Connection setup
|
||||
# We save the input to add it back at the very end.
|
||||
# We save the input to add it back at the very end.
|
||||
# The network learns the correction (Delta T), not the absolute T.
|
||||
x_input = x
|
||||
x_input = x
|
||||
|
||||
# 2. Encode
|
||||
h = self.enc(x) * torch.exp(self.scale_x)
|
||||
|
||||
|
||||
# Scale edge attributes (learnable gating of physical conductivity)
|
||||
w = edge_attr * torch.exp(self.scale_edge_attr)
|
||||
|
||||
# 4. Message Passing (Diffusion Steps)
|
||||
for layer in self.layers:
|
||||
# h is updated internally via residual connection in DiffusionLayer
|
||||
h = layer(h, edge_index, w)
|
||||
h = layer(h, edge_index, w, conductivity)
|
||||
h = self.func(h)
|
||||
|
||||
# 5. Decode
|
||||
delta_x = self.dec(h)
|
||||
|
||||
|
||||
# 6. Final Update (Explicit Euler Step)
|
||||
# T_new = T_old + Correction
|
||||
# return x_input + delta_x
|
||||
return delta_ddx
|
||||
return delta_x
|
||||
|
||||
@@ -44,7 +44,7 @@ from torch_geometric.nn.conv import GCNConv, SAGEConv, GatedGraphConv, GraphConv
|
||||
|
||||
# def message(self, x_j, edge_weight):
|
||||
# return x_j * edge_weight.view(-1, 1)
|
||||
|
||||
|
||||
# @staticmethod
|
||||
# def normalize(edge_weights, edge_index, num_nodes, dtype=None):
|
||||
# """Symmetrically normalize edge weights."""
|
||||
@@ -58,7 +58,7 @@ from torch_geometric.nn.conv import GCNConv, SAGEConv, GatedGraphConv, GraphConv
|
||||
# deg_inv_sqrt = deg.pow(-0.5)
|
||||
# deg_inv_sqrt[deg_inv_sqrt == float("inf")] = 0
|
||||
# return deg_inv_sqrt[row] * edge_weights * deg_inv_sqrt[col]
|
||||
|
||||
|
||||
|
||||
# class CorrectionNet(nn.Module):
|
||||
# def __init__(self, input_dim=1, output_dim=1, hidden_dim=8, n_layers=8):
|
||||
@@ -89,7 +89,7 @@ from torch_geometric.nn.conv import GCNConv, SAGEConv, GatedGraphConv, GraphConv
|
||||
# super().__init__()
|
||||
# layers = []
|
||||
# func = torch.nn.ReLU
|
||||
|
||||
|
||||
# self.network = nn.Sequential(
|
||||
# nn.Linear(input_dim, hidden_dim),
|
||||
# func(),
|
||||
@@ -112,30 +112,32 @@ from torch_geometric.nn.conv import GCNConv, SAGEConv, GatedGraphConv, GraphConv
|
||||
# import torch.nn as nn
|
||||
# from torch_geometric.nn import MessagePassing
|
||||
|
||||
|
||||
class DiffusionLayer(MessagePassing):
|
||||
"""
|
||||
Modella: T_new = T_old + dt * Divergenza(Flusso)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
channels: int,
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
super().__init__(aggr='add', **kwargs)
|
||||
|
||||
|
||||
super().__init__(aggr="add", **kwargs)
|
||||
|
||||
self.dt = nn.Parameter(torch.tensor(1e-4))
|
||||
self.conductivity_net = nn.Sequential(
|
||||
nn.Linear(channels, channels, bias=False),
|
||||
nn.GELU(),
|
||||
nn.Linear(channels, channels, bias=False),
|
||||
)
|
||||
|
||||
|
||||
self.phys_encoder = nn.Sequential(
|
||||
nn.Linear(1, 8, bias=False),
|
||||
nn.Tanh(),
|
||||
nn.Linear(8, 1, bias=False),
|
||||
nn.Softplus()
|
||||
nn.Softplus(),
|
||||
)
|
||||
|
||||
def forward(self, x, edge_index, edge_weight):
|
||||
@@ -154,7 +156,7 @@ class DiffusionLayer(MessagePassing):
|
||||
class CorrectionNet(nn.Module):
|
||||
def __init__(self, input_dim=1, output_dim=1, hidden_dim=32, n_layers=4):
|
||||
super().__init__()
|
||||
|
||||
|
||||
# Encoder: Projects input temperature to hidden feature space
|
||||
self.enc = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim, bias=True),
|
||||
@@ -167,12 +169,12 @@ class CorrectionNet(nn.Module):
|
||||
|
||||
# Scale parameters for conditioning
|
||||
self.scale_edge_attr = nn.Parameter(torch.zeros(1))
|
||||
|
||||
|
||||
# Stack of Diffusion Layers
|
||||
self.layers = torch.nn.ModuleList(
|
||||
[DiffusionLayer(hidden_dim) for _ in range(n_layers)]
|
||||
)
|
||||
|
||||
|
||||
# Decoder: Projects hidden features back to Temperature space
|
||||
self.dec = nn.Sequential(
|
||||
nn.Linear(hidden_dim, hidden_dim, bias=True),
|
||||
@@ -185,26 +187,26 @@ class CorrectionNet(nn.Module):
|
||||
|
||||
def forward(self, x, edge_index, edge_attr):
|
||||
# 1. Global Residual Connection setup
|
||||
# We save the input to add it back at the very end.
|
||||
# We save the input to add it back at the very end.
|
||||
# The network learns the correction (Delta T), not the absolute T.
|
||||
x_input = x
|
||||
x_input = x
|
||||
|
||||
# 2. Encode
|
||||
h = self.enc(x) * torch.exp(self.scale_x)
|
||||
|
||||
|
||||
# Scale edge attributes (learnable gating of physical conductivity)
|
||||
w = edge_attr * torch.exp(self.scale_edge_attr)
|
||||
|
||||
# 4. Message Passing (Diffusion Steps)
|
||||
for layer in self.layers:
|
||||
# h is updated internally via residual connection in DiffusionLayer
|
||||
h = layer(h, edge_index, w)
|
||||
h = layer(h, edge_index, w)
|
||||
h = self.func(h)
|
||||
|
||||
# 5. Decode
|
||||
delta_x = self.dec(h)
|
||||
|
||||
|
||||
# 6. Final Update (Explicit Euler Step)
|
||||
# T_new = T_old + Correction
|
||||
# return x_input + delta_x
|
||||
return delta_x
|
||||
return delta_x
|
||||
|
||||
Reference in New Issue
Block a user