fix models

This commit is contained in:
Filippo Olivo
2025-10-29 16:48:23 +01:00
parent 35770ace67
commit 5c5483744c
2 changed files with 32 additions and 26 deletions

View File

@@ -1,7 +1,6 @@
import torch
import torch.nn as nn
from torch_geometric.nn import MessagePassing
from tqdm import tqdm
class FiniteDifferenceStep(MessagePassing):
@@ -14,8 +13,9 @@ class FiniteDifferenceStep(MessagePassing):
assert (
aggr == "add"
), "Per somme pesate, l'aggregazione deve essere 'add'."
self.root_weight = float(root_weight)
self.p = torch.nn.Parameter(torch.tensor(0.5))
# self.root_weight = float(root_weight)
self.p = torch.nn.Parameter(torch.tensor(0.8))
self.a = root_weight
def forward(self, x, edge_index, edge_attr, deg):
"""
@@ -43,7 +43,9 @@ class FiniteDifferenceStep(MessagePassing):
"""
TODO: add docstring.
"""
return self.root_weight * aggr_out + (1 - self.root_weight) * x
a = torch.clamp(self.a, 0.0, 1.0)
return a * aggr_out + (1 - a) * x
# return self.a * aggr_out + (1 - self.a) * x
class GraphFiniteDifference(nn.Module):

View File

@@ -1,7 +1,7 @@
import torch
import torch.nn as nn
from torch_geometric.nn import MessagePassing
from tqdm import tqdm
from torch.nn.utils import spectral_norm
class FiniteDifferenceStep(MessagePassing):
@@ -14,14 +14,29 @@ class FiniteDifferenceStep(MessagePassing):
assert (
aggr == "add"
), "Per somme pesate, l'aggregazione deve essere 'add'."
self.root_weight = float(root_weight)
self.correction_net = nn.Sequential(
nn.Linear(2, 16),
nn.GELU(),
nn.Linear(16, 1),
nn.Linear(2, 6),
nn.Tanh(),
nn.Linear(6, 1),
nn.Tanh(),
)
self.update_net = nn.Sequential(
spectral_norm(nn.Linear(1, 6)),
nn.Softplus(),
spectral_norm(nn.Linear(6, 1)),
nn.Softplus(),
)
self.message_net = nn.Sequential(
spectral_norm(nn.Linear(1, 6)),
nn.Softplus(),
spectral_norm(nn.Linear(6, 1)),
nn.Softplus(),
)
self.p = torch.nn.Parameter(torch.tensor(0.5))
# self.a = torch.nn.Parameter(torch.tensor(root_weight))
def forward(self, x, edge_index, edge_attr, deg):
"""
TODO: add docstring.
@@ -33,9 +48,11 @@ class FiniteDifferenceStep(MessagePassing):
"""
TODO: add docstring.
"""
x_in = torch.cat([x_j, edge_attr.view(-1, 1)], dim=-1)
correction = self.correction_net(x_in)
return edge_attr.view(-1, 1) * x_j + correction
# x_in = torch.cat([x_j, edge_attr.view(-1, 1)], dim=-1)
# correction = self.correction_net(x_in)
# p = torch.sigmoid(self.p)
# return (p * edge_attr.view(-1, 1) + (1 - p) * correction) * x_j
return edge_attr.view(-1, 1) * x_j
def aggregate(self, inputs, index, deg):
"""
@@ -49,7 +66,7 @@ class FiniteDifferenceStep(MessagePassing):
"""
TODO: add docstring.
"""
return self.root_weight * aggr_out + (1 - self.root_weight) * x
return self.update_net(aggr_out)
class GraphFiniteDifference(nn.Module):
@@ -99,27 +116,14 @@ class GraphFiniteDifference(nn.Module):
c_ij = self._compute_c_ij(c, edge_index)
edge_attr = edge_attr * c_ij
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
# Calcola la soglia staccando x dal grafo
conv_thres = self.threshold * torch.norm(x.detach())
for _i in range(self.max_iters):
out = self.fd_step(x, edge_index, edge_attr, deg)
out[boundary_mask] = boundary_values.unsqueeze(-1)
# Controllo convergenza senza tracciamento gradienti
with torch.no_grad():
residual_norm = torch.norm(out - x)
if residual_norm < conv_thres:
break
# --- OTTIMIZZAZIONE CHIAVE ---
# Stacca 'out' dal grafo prima della prossima iterazione
# per evitare BPTT e risparmiare memoria.
x = out.detach()
# Il 'out' finale restituito mantiene i gradienti
# dell'ULTIMA chiamata a fd_step, permettendo al modello
# di apprendere correttamente.
return out, _i + 1