Compare commits
3 Commits
2935785b31
...
7a2316da04
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
7a2316da04 | ||
|
|
c1820d5855 | ||
|
|
f2ce282a68 |
@@ -116,13 +116,12 @@ class GraphSolver(LightningModule):
|
|||||||
return out
|
return out
|
||||||
|
|
||||||
def _preprocess_batch(self, batch: Batch):
|
def _preprocess_batch(self, batch: Batch):
|
||||||
x, y, c, edge_index, edge_attr, nodal_area = (
|
x, y, c, edge_index, edge_attr = (
|
||||||
batch.x,
|
batch.x,
|
||||||
batch.y,
|
batch.y,
|
||||||
batch.c,
|
batch.c,
|
||||||
batch.edge_index,
|
batch.edge_index,
|
||||||
batch.edge_attr,
|
batch.edge_attr,
|
||||||
batch.nodal_area,
|
|
||||||
)
|
)
|
||||||
edge_attr = 1 / edge_attr
|
edge_attr = 1 / edge_attr
|
||||||
conductivity = self._compute_c_ij(c, edge_index)
|
conductivity = self._compute_c_ij(c, edge_index)
|
||||||
@@ -133,34 +132,7 @@ class GraphSolver(LightningModule):
|
|||||||
x, y, edge_index, edge_attr, conductivity = self._preprocess_batch(
|
x, y, edge_index, edge_attr, conductivity = self._preprocess_batch(
|
||||||
batch
|
batch
|
||||||
)
|
)
|
||||||
# deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
|
||||||
losses = []
|
losses = []
|
||||||
# print(x.shape, y.shape)
|
|
||||||
# # print(torch.max(edge_index), torch.min(edge_index))
|
|
||||||
# plt.figure()
|
|
||||||
# plt.subplot(2,3,1)
|
|
||||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=x.squeeze().cpu())
|
|
||||||
# plt.subplot(2,3,2)
|
|
||||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,0,:].squeeze().cpu())
|
|
||||||
# plt.subplot(2,3,3)
|
|
||||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,1,:].squeeze().cpu())
|
|
||||||
# plt.subplot(2,3,4)
|
|
||||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,2,:].squeeze().cpu())
|
|
||||||
# plt.subplot(2,3,5)
|
|
||||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,3,:].squeeze().cpu())
|
|
||||||
# plt.subplot(2,3,6)
|
|
||||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,4,:].squeeze().cpu())
|
|
||||||
# plt.suptitle("Training Batch Visualization", fontsize=16)
|
|
||||||
# plt.savefig("training_batch_visualization.png", dpi=300)
|
|
||||||
# plt.close()
|
|
||||||
# y = z
|
|
||||||
pos = batch.pos
|
|
||||||
boundary_mask = batch.boundary_mask
|
|
||||||
boundary_values = batch.boundary_values
|
|
||||||
# plt.scatter(pos[boundary_mask,0].cpu(), pos[boundary_mask,1].cpu(), c=boundary_values.cpu(), s=1)
|
|
||||||
# plt.savefig("boundary_nodes.png", dpi=300)
|
|
||||||
# y = z
|
|
||||||
scale = 50
|
|
||||||
for i in range(self.unrolling_steps):
|
for i in range(self.unrolling_steps):
|
||||||
out = self._compute_model_steps(
|
out = self._compute_model_steps(
|
||||||
x,
|
x,
|
||||||
@@ -172,15 +144,26 @@ class GraphSolver(LightningModule):
|
|||||||
conductivity,
|
conductivity,
|
||||||
)
|
)
|
||||||
x = out
|
x = out
|
||||||
# print(out.shape, y[:, i, :].shape)
|
|
||||||
losses.append(self.loss(out.flatten(), y[:, i, :].flatten()))
|
losses.append(self.loss(out.flatten(), y[:, i, :].flatten()))
|
||||||
# print(self.model.scale_edge_attr.item())
|
|
||||||
|
|
||||||
loss = torch.stack(losses).mean()
|
loss = torch.stack(losses).mean()
|
||||||
# for param in self.model.parameters():
|
|
||||||
# print(f"Param: {param.shape}, Grad: {param.grad}")
|
|
||||||
# print(f"Param: {param[0]}")
|
|
||||||
self._log_loss(loss, batch, "train")
|
self._log_loss(loss, batch, "train")
|
||||||
|
for i, layer in enumerate(self.model.layers):
|
||||||
|
self.log(
|
||||||
|
f"alpha_{i}",
|
||||||
|
layer.alpha,
|
||||||
|
prog_bar=True,
|
||||||
|
on_epoch=True,
|
||||||
|
on_step=False,
|
||||||
|
batch_size=int(batch.num_graphs),
|
||||||
|
)
|
||||||
|
self.log(
|
||||||
|
"dt",
|
||||||
|
self.model.dt,
|
||||||
|
prog_bar=True,
|
||||||
|
on_epoch=True,
|
||||||
|
on_step=False,
|
||||||
|
batch_size=int(batch.num_graphs),
|
||||||
|
)
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
def validation_step(self, batch: Batch, batch_idx):
|
def validation_step(self, batch: Batch, batch_idx):
|
||||||
@@ -222,8 +205,59 @@ class GraphSolver(LightningModule):
|
|||||||
self._log_loss(loss, batch, "val")
|
self._log_loss(loss, batch, "val")
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
|
def _check_convergence(self, y_pred, y_true, tol=1e-3):
|
||||||
|
l2_norm = torch.norm(y_pred - y_true, p=2)
|
||||||
|
y_true_norm = torch.norm(y_true, p=2)
|
||||||
|
rel_error = l2_norm / (y_true_norm + 1e-8)
|
||||||
|
return rel_error.item() < tol
|
||||||
|
|
||||||
def test_step(self, batch: Batch, batch_idx):
|
def test_step(self, batch: Batch, batch_idx):
|
||||||
pass
|
x, y, edge_index, edge_attr, conductivity = self._preprocess_batch(
|
||||||
|
batch
|
||||||
|
)
|
||||||
|
# deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||||
|
losses = []
|
||||||
|
all_losses = []
|
||||||
|
norms = []
|
||||||
|
for i in range(self.unrolling_steps):
|
||||||
|
out = self._compute_model_steps(
|
||||||
|
# torch.cat([x,pos], dim=-1),
|
||||||
|
x,
|
||||||
|
edge_index,
|
||||||
|
edge_attr,
|
||||||
|
# deg,
|
||||||
|
batch.boundary_mask,
|
||||||
|
batch.boundary_values,
|
||||||
|
conductivity,
|
||||||
|
)
|
||||||
|
norms.append(torch.norm(out - x, p=2).item())
|
||||||
|
x = out
|
||||||
|
loss = self.loss(out, y[:, i, :])
|
||||||
|
all_losses.append(loss.item())
|
||||||
|
losses.append(loss)
|
||||||
|
# if (
|
||||||
|
# batch_idx == 0
|
||||||
|
# and self.current_epoch % 10 == 0
|
||||||
|
# and self.current_epoch > 0
|
||||||
|
# ):
|
||||||
|
# _plot_mesh(
|
||||||
|
# batch.pos,
|
||||||
|
# x,
|
||||||
|
# out,
|
||||||
|
# y[:, i, :],
|
||||||
|
# batch.batch,
|
||||||
|
# i,
|
||||||
|
# self.current_epoch,
|
||||||
|
# )
|
||||||
|
loss = torch.stack(losses).mean()
|
||||||
|
# if (
|
||||||
|
# batch_idx == 0
|
||||||
|
# and self.current_epoch % 10 == 0
|
||||||
|
# and self.current_epoch > 0
|
||||||
|
# ):
|
||||||
|
_plot_losses(norms, self.current_epoch)
|
||||||
|
self._log_loss(loss, batch, "test")
|
||||||
|
return loss
|
||||||
|
|
||||||
def configure_optimizers(self):
|
def configure_optimizers(self):
|
||||||
optimizer = torch.optim.AdamW(self.parameters(), lr=1e-3)
|
optimizer = torch.optim.AdamW(self.parameters(), lr=1e-3)
|
||||||
|
|||||||
@@ -7,44 +7,13 @@ from torch_geometric.loader import DataLoader
|
|||||||
from torch_geometric.utils import to_undirected
|
from torch_geometric.utils import to_undirected
|
||||||
from .mesh_data import MeshData
|
from .mesh_data import MeshData
|
||||||
|
|
||||||
# from torch.utils.data import Dataset
|
|
||||||
from torch_geometric.utils import scatter
|
|
||||||
|
|
||||||
|
|
||||||
def compute_nodal_area(edge_index, edge_attr, num_nodes):
|
|
||||||
"""
|
|
||||||
1. Calculates Area ~ (Min Edge Length)^2
|
|
||||||
2. Scales by Mean so average cell has size 1.0
|
|
||||||
"""
|
|
||||||
row, col = edge_index
|
|
||||||
dist = edge_attr.squeeze()
|
|
||||||
|
|
||||||
# 1. Get 'h' (Closest neighbor distance)
|
|
||||||
# Using 'min' filters out diagonal connections in the quad mesh
|
|
||||||
h = scatter(dist, col, dim=0, dim_size=num_nodes, reduce="min")
|
|
||||||
|
|
||||||
# 2. Estimate Raw Area
|
|
||||||
raw_area = h.pow(2)
|
|
||||||
|
|
||||||
# 3. Mean Scaling (The Best Normalization)
|
|
||||||
# This keeps values near 1.0, preserving stability AND physics ratios.
|
|
||||||
# We detach to ensure no gradients flow here (it's static data).
|
|
||||||
mean_val = raw_area.mean().detach()
|
|
||||||
|
|
||||||
# Result:
|
|
||||||
# Small cells -> approx 0.1
|
|
||||||
# Large cells -> approx 5.0
|
|
||||||
# Average -> 1.0
|
|
||||||
# nodal_area = (raw_area / mean_val).unsqueeze(-1) + 1e-6
|
|
||||||
nodal_area = raw_area
|
|
||||||
return nodal_area.unsqueeze(-1)
|
|
||||||
|
|
||||||
|
|
||||||
class GraphDataModule(LightningDataModule):
|
class GraphDataModule(LightningDataModule):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
hf_repo: str,
|
hf_repo: str,
|
||||||
split_name: str,
|
split_name: str,
|
||||||
|
n_elements: int = None,
|
||||||
train_size: float = 0.2,
|
train_size: float = 0.2,
|
||||||
val_size: float = 0.1,
|
val_size: float = 0.1,
|
||||||
test_size: float = 0.1,
|
test_size: float = 0.1,
|
||||||
@@ -52,18 +21,19 @@ class GraphDataModule(LightningDataModule):
|
|||||||
remove_boundary_edges: bool = False,
|
remove_boundary_edges: bool = False,
|
||||||
build_radial_graph: bool = False,
|
build_radial_graph: bool = False,
|
||||||
radius: float = None,
|
radius: float = None,
|
||||||
start_unrolling_steps: int = 1,
|
unrolling_steps: int = 1,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.hf_repo = hf_repo
|
self.hf_repo = hf_repo
|
||||||
self.split_name = split_name
|
self.split_name = split_name
|
||||||
|
self.n_elements = n_elements
|
||||||
self.dataset_dict = {}
|
self.dataset_dict = {}
|
||||||
self.train_dataset, self.val_dataset, self.test_dataset = (
|
self.train_dataset, self.val_dataset, self.test_dataset = (
|
||||||
None,
|
None,
|
||||||
None,
|
None,
|
||||||
None,
|
None,
|
||||||
)
|
)
|
||||||
self.unrolling_steps = start_unrolling_steps
|
self.unrolling_steps = unrolling_steps
|
||||||
self.geometry_dict = {}
|
self.geometry_dict = {}
|
||||||
self.train_size = train_size
|
self.train_size = train_size
|
||||||
self.val_size = val_size
|
self.val_size = val_size
|
||||||
@@ -76,6 +46,9 @@ class GraphDataModule(LightningDataModule):
|
|||||||
def prepare_data(self):
|
def prepare_data(self):
|
||||||
dataset = load_dataset(self.hf_repo, name="snapshots")[self.split_name]
|
dataset = load_dataset(self.hf_repo, name="snapshots")[self.split_name]
|
||||||
geometry = load_dataset(self.hf_repo, name="geometry")[self.split_name]
|
geometry = load_dataset(self.hf_repo, name="geometry")[self.split_name]
|
||||||
|
if self.n_elements is not None:
|
||||||
|
dataset = dataset.select(range(self.n_elements))
|
||||||
|
geometry = geometry.select(range(self.n_elements))
|
||||||
|
|
||||||
total_len = len(dataset)
|
total_len = len(dataset)
|
||||||
train_len = int(self.train_size * total_len)
|
train_len = int(self.train_size * total_len)
|
||||||
@@ -117,13 +90,18 @@ class GraphDataModule(LightningDataModule):
|
|||||||
self,
|
self,
|
||||||
snapshot: dict,
|
snapshot: dict,
|
||||||
geometry: dict,
|
geometry: dict,
|
||||||
|
test: bool = False,
|
||||||
) -> Data:
|
) -> Data:
|
||||||
conductivity = torch.tensor(
|
conductivity = torch.tensor(
|
||||||
geometry["conductivity"], dtype=torch.float32
|
geometry["conductivity"], dtype=torch.float32
|
||||||
)
|
)
|
||||||
temperatures = torch.tensor(
|
temperatures = (
|
||||||
snapshot["temperatures"], dtype=torch.float32
|
torch.tensor(snapshot["temperatures"], dtype=torch.float32)[:40]
|
||||||
)[:40]
|
if not test
|
||||||
|
else torch.tensor(snapshot["temperatures"], dtype=torch.float32)[
|
||||||
|
: self.unrolling_steps + 1
|
||||||
|
]
|
||||||
|
)
|
||||||
times = torch.tensor(snapshot["times"], dtype=torch.float32)
|
times = torch.tensor(snapshot["times"], dtype=torch.float32)
|
||||||
|
|
||||||
pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2]
|
pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2]
|
||||||
@@ -138,16 +116,6 @@ class GraphDataModule(LightningDataModule):
|
|||||||
)
|
)
|
||||||
|
|
||||||
if self.build_radial_graph:
|
if self.build_radial_graph:
|
||||||
# from pina.graph import RadiusGraph
|
|
||||||
|
|
||||||
# if self.radius is None:
|
|
||||||
# raise ValueError("Radius must be specified for radial graph.")
|
|
||||||
# edge_index = RadiusGraph.compute_radius_graph(
|
|
||||||
# pos, radius=self.radius
|
|
||||||
# )
|
|
||||||
# from torch_geometric.utils import remove_self_loops
|
|
||||||
|
|
||||||
# edge_index, _ = remove_self_loops(edge_index)
|
|
||||||
raise NotImplementedError(
|
raise NotImplementedError(
|
||||||
"Radial graph building not implemented yet."
|
"Radial graph building not implemented yet."
|
||||||
)
|
)
|
||||||
@@ -161,7 +129,6 @@ class GraphDataModule(LightningDataModule):
|
|||||||
bottom_ids, right_ids, top_ids, left_ids, temperatures[0, :]
|
bottom_ids, right_ids, top_ids, left_ids, temperatures[0, :]
|
||||||
)
|
)
|
||||||
edge_attr = torch.norm(pos[edge_index[0]] - pos[edge_index[1]], dim=1)
|
edge_attr = torch.norm(pos[edge_index[0]] - pos[edge_index[1]], dim=1)
|
||||||
nodal_area = compute_nodal_area(edge_index, edge_attr, pos.size(0))
|
|
||||||
if self.remove_boundary_edges:
|
if self.remove_boundary_edges:
|
||||||
boundary_idx = torch.unique(boundary_mask)
|
boundary_idx = torch.unique(boundary_mask)
|
||||||
edge_index_mask = ~torch.isin(edge_index[1], boundary_idx)
|
edge_index_mask = ~torch.isin(edge_index[1], boundary_idx)
|
||||||
@@ -186,7 +153,6 @@ class GraphDataModule(LightningDataModule):
|
|||||||
edge_attr=edge_attr,
|
edge_attr=edge_attr,
|
||||||
boundary_mask=boundary_mask,
|
boundary_mask=boundary_mask,
|
||||||
boundary_values=boundary_values,
|
boundary_values=boundary_values,
|
||||||
nodal_area=nodal_area,
|
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
return data
|
return data
|
||||||
@@ -213,7 +179,7 @@ class GraphDataModule(LightningDataModule):
|
|||||||
]
|
]
|
||||||
if stage == "test" or stage is None:
|
if stage == "test" or stage is None:
|
||||||
self.test_data = [
|
self.test_data = [
|
||||||
self._build_dataset(snap, geom)
|
self._build_dataset(snap, geom, test=True)
|
||||||
for snap, geom in tqdm(
|
for snap, geom in tqdm(
|
||||||
zip(self.dataset_dict["test"], self.geometry_dict["test"]),
|
zip(self.dataset_dict["test"], self.geometry_dict["test"]),
|
||||||
desc="Building test graphs",
|
desc="Building test graphs",
|
||||||
@@ -234,7 +200,9 @@ class GraphDataModule(LightningDataModule):
|
|||||||
# self.train_dataset = ds
|
# self.train_dataset = ds
|
||||||
# print(type(self.train_data[0]))
|
# print(type(self.train_data[0]))
|
||||||
ds = [i for data in self.train_data for i in data]
|
ds = [i for data in self.train_data for i in data]
|
||||||
# print(type(ds[0]))
|
print(
|
||||||
|
f"\nLoading training data, using {self.unrolling_steps} unrolling steps..."
|
||||||
|
)
|
||||||
return DataLoader(
|
return DataLoader(
|
||||||
ds,
|
ds,
|
||||||
batch_size=self.batch_size,
|
batch_size=self.batch_size,
|
||||||
@@ -244,6 +212,9 @@ class GraphDataModule(LightningDataModule):
|
|||||||
)
|
)
|
||||||
|
|
||||||
def val_dataloader(self):
|
def val_dataloader(self):
|
||||||
|
print(
|
||||||
|
f"\nLoading validation data, using {self.unrolling_steps} unrolling steps..."
|
||||||
|
)
|
||||||
ds = [i for data in self.val_data for i in data]
|
ds = [i for data in self.val_data for i in data]
|
||||||
return DataLoader(
|
return DataLoader(
|
||||||
ds,
|
ds,
|
||||||
@@ -254,12 +225,10 @@ class GraphDataModule(LightningDataModule):
|
|||||||
)
|
)
|
||||||
|
|
||||||
def test_dataloader(self):
|
def test_dataloader(self):
|
||||||
ds = self.create_autoregressive_datasets(
|
ds = [i for data in self.test_data for i in data]
|
||||||
dataset="test", no_unrolling=True
|
|
||||||
)
|
|
||||||
return DataLoader(
|
return DataLoader(
|
||||||
ds,
|
ds,
|
||||||
batch_size=self.batch_size,
|
batch_size=1,
|
||||||
shuffle=False,
|
shuffle=False,
|
||||||
num_workers=8,
|
num_workers=8,
|
||||||
pin_memory=True,
|
pin_memory=True,
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from torch_geometric.nn import MessagePassing
|
from torch_geometric.nn import MessagePassing
|
||||||
|
from torch.nn.utils import spectral_norm
|
||||||
|
|
||||||
|
|
||||||
class DiffusionLayer(MessagePassing):
|
class DiffusionLayer(MessagePassing):
|
||||||
@@ -13,28 +14,34 @@ class DiffusionLayer(MessagePassing):
|
|||||||
channels: int,
|
channels: int,
|
||||||
**kwargs,
|
**kwargs,
|
||||||
):
|
):
|
||||||
|
|
||||||
super().__init__(aggr="add", **kwargs)
|
super().__init__(aggr="add", **kwargs)
|
||||||
|
|
||||||
self.dt = nn.Parameter(torch.tensor(1e-4))
|
|
||||||
self.conductivity_net = nn.Sequential(
|
self.conductivity_net = nn.Sequential(
|
||||||
nn.Linear(channels, channels, bias=False),
|
spectral_norm(nn.Linear(channels, channels, bias=False)),
|
||||||
nn.GELU(),
|
nn.GELU(),
|
||||||
nn.Linear(channels, channels, bias=False),
|
spectral_norm(nn.Linear(channels, channels, bias=False)),
|
||||||
)
|
)
|
||||||
|
|
||||||
self.phys_encoder = nn.Sequential(
|
self.phys_encoder = nn.Sequential(
|
||||||
nn.Linear(1, 8, bias=False),
|
spectral_norm(nn.Linear(1, 8, bias=True)),
|
||||||
nn.Tanh(),
|
nn.Tanh(),
|
||||||
nn.Linear(8, 1, bias=False),
|
spectral_norm(nn.Linear(8, 1, bias=True)),
|
||||||
nn.Softplus(),
|
nn.Softplus(),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
self.alpha_param = nn.Parameter(torch.tensor(1e-2))
|
||||||
|
|
||||||
|
@property
|
||||||
|
def alpha(self):
|
||||||
|
return torch.clamp(self.alpha_param, min=1e-5, max=1.0)
|
||||||
|
|
||||||
def forward(self, x, edge_index, edge_weight, conductivity):
|
def forward(self, x, edge_index, edge_weight, conductivity):
|
||||||
edge_weight = edge_weight.unsqueeze(-1)
|
edge_weight = edge_weight.unsqueeze(-1)
|
||||||
conductance = self.phys_encoder(edge_weight)
|
conductance = self.phys_encoder(edge_weight)
|
||||||
net_flux = self.propagate(edge_index, x=x, conductance=conductance)
|
net_flux = self.propagate(edge_index, x=x, conductance=conductance)
|
||||||
return x + ((net_flux) * self.dt)
|
# return (1-self.alpha) * x + self.alpha * net_flux
|
||||||
|
# return net_flux + x
|
||||||
|
return x + self.alpha * net_flux
|
||||||
|
|
||||||
def message(self, x_i, x_j, conductance):
|
def message(self, x_i, x_j, conductance):
|
||||||
delta = x_j - x_i
|
delta = x_j - x_i
|
||||||
@@ -44,15 +51,21 @@ class DiffusionLayer(MessagePassing):
|
|||||||
|
|
||||||
|
|
||||||
class DiffusionNet(nn.Module):
|
class DiffusionNet(nn.Module):
|
||||||
def __init__(self, input_dim=1, output_dim=1, hidden_dim=8, n_layers=4):
|
def __init__(
|
||||||
|
self,
|
||||||
|
input_dim=1,
|
||||||
|
output_dim=1,
|
||||||
|
hidden_dim=8,
|
||||||
|
n_layers=4,
|
||||||
|
shared_weights=False,
|
||||||
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
# Encoder: Projects input temperature to hidden feature space
|
# Encoder: Projects input temperature to hidden feature space
|
||||||
self.enc = nn.Sequential(
|
self.enc = nn.Sequential(
|
||||||
nn.Linear(input_dim, hidden_dim, bias=True),
|
spectral_norm(nn.Linear(input_dim, hidden_dim, bias=True)),
|
||||||
nn.GELU(),
|
|
||||||
nn.Linear(hidden_dim, hidden_dim, bias=True),
|
|
||||||
nn.GELU(),
|
nn.GELU(),
|
||||||
|
spectral_norm(nn.Linear(hidden_dim, hidden_dim, bias=True)),
|
||||||
)
|
)
|
||||||
|
|
||||||
self.scale_x = nn.Parameter(torch.zeros(hidden_dim))
|
self.scale_x = nn.Parameter(torch.zeros(hidden_dim))
|
||||||
@@ -60,6 +73,14 @@ class DiffusionNet(nn.Module):
|
|||||||
# Scale parameters for conditioning
|
# Scale parameters for conditioning
|
||||||
self.scale_edge_attr = nn.Parameter(torch.zeros(1))
|
self.scale_edge_attr = nn.Parameter(torch.zeros(1))
|
||||||
|
|
||||||
|
# If shared_weights is True, use the same DiffusionLayer multiple times
|
||||||
|
if shared_weights:
|
||||||
|
diffusion_layer = DiffusionLayer(hidden_dim)
|
||||||
|
self.layers = torch.nn.ModuleList(
|
||||||
|
[diffusion_layer for _ in range(n_layers)]
|
||||||
|
)
|
||||||
|
# If shared_weights is False, use separate DiffusionLayers
|
||||||
|
else:
|
||||||
# Stack of Diffusion Layers
|
# Stack of Diffusion Layers
|
||||||
self.layers = torch.nn.ModuleList(
|
self.layers = torch.nn.ModuleList(
|
||||||
[DiffusionLayer(hidden_dim) for _ in range(n_layers)]
|
[DiffusionLayer(hidden_dim) for _ in range(n_layers)]
|
||||||
@@ -67,20 +88,25 @@ class DiffusionNet(nn.Module):
|
|||||||
|
|
||||||
# Decoder: Projects hidden features back to Temperature space
|
# Decoder: Projects hidden features back to Temperature space
|
||||||
self.dec = nn.Sequential(
|
self.dec = nn.Sequential(
|
||||||
nn.Linear(hidden_dim, hidden_dim, bias=True),
|
spectral_norm(nn.Linear(hidden_dim, hidden_dim, bias=True)),
|
||||||
nn.GELU(),
|
nn.GELU(),
|
||||||
nn.Linear(hidden_dim, output_dim, bias=True),
|
spectral_norm(nn.Linear(hidden_dim, output_dim, bias=True)),
|
||||||
nn.Softplus(), # Ensure positive temperature output
|
nn.Softplus(), # Ensure positive temperature output
|
||||||
)
|
)
|
||||||
|
|
||||||
self.func = torch.nn.GELU()
|
self.func = torch.nn.GELU()
|
||||||
|
|
||||||
|
self.dt_param = nn.Parameter(torch.tensor(1e-2))
|
||||||
|
|
||||||
|
@property
|
||||||
|
def dt(self):
|
||||||
|
return torch.clamp(self.dt_param, min=1e-5, max=0.5)
|
||||||
|
|
||||||
def forward(self, x, edge_index, edge_attr, conductivity):
|
def forward(self, x, edge_index, edge_attr, conductivity):
|
||||||
# 1. Global Residual Connection setup
|
# 1. Global Residual Connection setup
|
||||||
# We save the input to add it back at the very end.
|
# We save the input to add it back at the very end.
|
||||||
# The network learns the correction (Delta T), not the absolute T.
|
# The network learns the correction (Delta T), not the absolute T.
|
||||||
x_input = x
|
x_input = x
|
||||||
|
|
||||||
# 2. Encode
|
# 2. Encode
|
||||||
h = self.enc(x) * torch.exp(self.scale_x)
|
h = self.enc(x) * torch.exp(self.scale_x)
|
||||||
|
|
||||||
@@ -98,5 +124,4 @@ class DiffusionNet(nn.Module):
|
|||||||
|
|
||||||
# 6. Final Update (Explicit Euler Step)
|
# 6. Final Update (Explicit Euler Step)
|
||||||
# T_new = T_old + Correction
|
# T_new = T_old + Correction
|
||||||
# return x_input + delta_x
|
return delta_x + x_input * self.dt
|
||||||
return delta_x
|
|
||||||
|
|||||||
104
ThermalSolver/switch_dataloader_callback.py
Normal file
104
ThermalSolver/switch_dataloader_callback.py
Normal file
@@ -0,0 +1,104 @@
|
|||||||
|
import torch
|
||||||
|
from lightning.pytorch.callbacks import Callback
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
class SwitchDataLoaderCallback(Callback):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
ckpt_path,
|
||||||
|
increase_unrolling_steps_by,
|
||||||
|
increase_unrolling_steps_every,
|
||||||
|
max_unrolling_steps=10,
|
||||||
|
patience=None,
|
||||||
|
last_patience=None,
|
||||||
|
metric="val/loss",
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.ckpt_path = ckpt_path
|
||||||
|
if os.path.exists(ckpt_path) is False:
|
||||||
|
os.makedirs(ckpt_path)
|
||||||
|
self.increase_unrolling_steps_by = increase_unrolling_steps_by
|
||||||
|
self.increase_unrolling_steps_every = increase_unrolling_steps_every
|
||||||
|
self.max_unrolling_steps = max_unrolling_steps
|
||||||
|
self.metric = metric
|
||||||
|
self.actual_loss = torch.inf
|
||||||
|
if patience is not None:
|
||||||
|
self.patience = patience
|
||||||
|
if last_patience is not None:
|
||||||
|
self.last_patience = last_patience
|
||||||
|
self.no_improvement_epochs = 0
|
||||||
|
self.last_step_reached = False
|
||||||
|
|
||||||
|
def on_validation_epoch_end(self, trainer, pl_module):
|
||||||
|
self._metric_tracker(trainer, pl_module)
|
||||||
|
if self.last_step_reached is False:
|
||||||
|
self._unrolling_steps_handler(pl_module, trainer)
|
||||||
|
else:
|
||||||
|
if self.no_improvement_epochs >= self.last_patience:
|
||||||
|
trainer.should_stop = True
|
||||||
|
|
||||||
|
def _metric_tracker(self, trainer, pl_module):
|
||||||
|
if trainer.callback_metrics.get(self.metric) < self.actual_loss:
|
||||||
|
self.actual_loss = trainer.callback_metrics.get(self.metric)
|
||||||
|
self._save_model(pl_module, trainer)
|
||||||
|
self.no_improvement_epochs = 0
|
||||||
|
print(f"\nNew best {self.metric}: {self.actual_loss:.4f}")
|
||||||
|
else:
|
||||||
|
self.no_improvement_epochs += 1
|
||||||
|
print(
|
||||||
|
f"\nNo improvement in {self.metric} for {self.no_improvement_epochs} epochs."
|
||||||
|
)
|
||||||
|
|
||||||
|
def _should_reload_dataloader(self, trainer):
|
||||||
|
if self.patience is not None:
|
||||||
|
print(
|
||||||
|
f"Checking patience: {self.no_improvement_epochs} / {self.patience}"
|
||||||
|
)
|
||||||
|
if self.no_improvement_epochs >= self.patience:
|
||||||
|
return True
|
||||||
|
elif (
|
||||||
|
trainer.current_epoch + 1 % self.increase_unrolling_steps_every == 0
|
||||||
|
):
|
||||||
|
print("Reached scheduled epoch for increasing unrolling steps.")
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
def _unrolling_steps_handler(self, pl_module, trainer):
|
||||||
|
if self._should_reload_dataloader(trainer):
|
||||||
|
self._load_model(pl_module)
|
||||||
|
if pl_module.unrolling_steps >= self.max_unrolling_steps:
|
||||||
|
return
|
||||||
|
pl_module.unrolling_steps += self.increase_unrolling_steps_by
|
||||||
|
trainer.datamodule.unrolling_steps = pl_module.unrolling_steps
|
||||||
|
print(f"Incremented unrolling steps to {pl_module.unrolling_steps}")
|
||||||
|
trainer.datamodule.setup(stage="fit")
|
||||||
|
trainer.manual_dataloader_reload()
|
||||||
|
self.actual_loss = torch.inf
|
||||||
|
if pl_module.unrolling_steps >= self.max_unrolling_steps:
|
||||||
|
print(
|
||||||
|
"Reached max unrolling steps. Stopping further increments."
|
||||||
|
)
|
||||||
|
self.last_step_reached = True
|
||||||
|
|
||||||
|
def _save_model(self, pl_module, trainer):
|
||||||
|
pt_path = os.path.join(
|
||||||
|
self.ckpt_path,
|
||||||
|
f"{pl_module.unrolling_steps}_unrolling_best_model.pt",
|
||||||
|
)
|
||||||
|
torch.save(pl_module.state_dict(), pt_path) # <--- CHANGED THIS
|
||||||
|
ckpt_path = os.path.join(
|
||||||
|
self.ckpt_path,
|
||||||
|
f"{pl_module.unrolling_steps}_unrolling_best_checkpoint.ckpt",
|
||||||
|
)
|
||||||
|
trainer.save_checkpoint(ckpt_path, weights_only=False)
|
||||||
|
|
||||||
|
def _load_model(self, pl_module):
|
||||||
|
pt_path = os.path.join(
|
||||||
|
self.ckpt_path,
|
||||||
|
f"{pl_module.unrolling_steps}_unrolling_best_model.pt",
|
||||||
|
)
|
||||||
|
pl_module.load_state_dict(torch.load(pt_path, weights_only=True))
|
||||||
|
print(
|
||||||
|
f"Loaded model weights from {pt_path} for unrolling steps = {pl_module.unrolling_steps}"
|
||||||
|
)
|
||||||
@@ -10,8 +10,8 @@ trainer:
|
|||||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||||
init_args:
|
init_args:
|
||||||
save_dir: logs.autoregressive.wandb
|
save_dir: logs.autoregressive.wandb
|
||||||
project: "thermal-conduction-unsteady"
|
project: "thermal-conduction-unsteady-5.steps"
|
||||||
name: "16_refined"
|
name: "16_layer_16_hidden"
|
||||||
callbacks:
|
callbacks:
|
||||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||||
init_args:
|
init_args:
|
||||||
@@ -24,16 +24,24 @@ trainer:
|
|||||||
init_args:
|
init_args:
|
||||||
monitor: val/loss
|
monitor: val/loss
|
||||||
mode: min
|
mode: min
|
||||||
patience: 10
|
patience: 30
|
||||||
verbose: false
|
verbose: false
|
||||||
|
# - class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
|
||||||
|
# init_args:
|
||||||
|
# increase_unrolling_steps_by: 5
|
||||||
|
# patience: 10
|
||||||
|
# last_patience: 15
|
||||||
|
# max_unrolling_steps: 20
|
||||||
|
# ckpt_path: logs.autoregressive.wandb/16_16_refined/checkpoints
|
||||||
max_epochs: 1000
|
max_epochs: 1000
|
||||||
min_epochs: null
|
min_epochs: null
|
||||||
max_steps: -1
|
max_steps: -1
|
||||||
min_steps: null
|
min_steps: null
|
||||||
overfit_batches: 0.0
|
overfit_batches: 0.0
|
||||||
log_every_n_steps: null
|
log_every_n_steps: 0
|
||||||
accumulate_grad_batches: 4
|
accumulate_grad_batches: 1
|
||||||
default_root_dir: null
|
default_root_dir: null
|
||||||
|
gradient_clip_val: 1.0
|
||||||
|
|
||||||
model:
|
model:
|
||||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||||
@@ -50,13 +58,14 @@ data:
|
|||||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||||
init_args:
|
init_args:
|
||||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||||
split_name: "100_samples_easy_refined"
|
split_name: "easy.refined"
|
||||||
batch_size: 8
|
n_elements: 100
|
||||||
|
batch_size: 32
|
||||||
train_size: 0.7
|
train_size: 0.7
|
||||||
val_size: 0.2
|
val_size: 0.2
|
||||||
test_size: 0.1
|
test_size: 0.1
|
||||||
build_radial_graph: false
|
build_radial_graph: false
|
||||||
remove_boundary_edges: true
|
remove_boundary_edges: true
|
||||||
start_unrolling_steps: 5
|
unrolling_steps: 5
|
||||||
optimizer: null
|
optimizer: null
|
||||||
lr_scheduler: null
|
lr_scheduler: null
|
||||||
@@ -10,12 +10,12 @@ trainer:
|
|||||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||||
init_args:
|
init_args:
|
||||||
save_dir: logs.autoregressive.wandb
|
save_dir: logs.autoregressive.wandb
|
||||||
project: "thermal-conduction-unsteady"
|
project: "thermal-conduction-unsteady-5.steps"
|
||||||
name: "standard"
|
name: "32_layer_16_hidden"
|
||||||
callbacks:
|
callbacks:
|
||||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||||
init_args:
|
init_args:
|
||||||
dirpath: logs.autoregressive.wandb/standard/checkpoints
|
dirpath: logs.autoregressive.wandb/32_refined/checkpoints
|
||||||
monitor: val/loss
|
monitor: val/loss
|
||||||
mode: min
|
mode: min
|
||||||
save_top_k: 1
|
save_top_k: 1
|
||||||
@@ -24,16 +24,24 @@ trainer:
|
|||||||
init_args:
|
init_args:
|
||||||
monitor: val/loss
|
monitor: val/loss
|
||||||
mode: min
|
mode: min
|
||||||
patience: 10
|
patience: 30
|
||||||
verbose: false
|
verbose: false
|
||||||
|
# - class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
|
||||||
|
# init_args:
|
||||||
|
# increase_unrolling_steps_by: 5
|
||||||
|
# patience: 10
|
||||||
|
# last_patience: 15
|
||||||
|
# max_unrolling_steps: 20
|
||||||
|
# ckpt_path: logs.autoregressive.wandb/16_16_refined/checkpoints
|
||||||
max_epochs: 1000
|
max_epochs: 1000
|
||||||
min_epochs: null
|
min_epochs: null
|
||||||
max_steps: -1
|
max_steps: -1
|
||||||
min_steps: null
|
min_steps: null
|
||||||
overfit_batches: 0.0
|
overfit_batches: 0.0
|
||||||
log_every_n_steps: null
|
log_every_n_steps: 0
|
||||||
accumulate_grad_batches: 2
|
accumulate_grad_batches: 2
|
||||||
default_root_dir: null
|
default_root_dir: null
|
||||||
|
gradient_clip_val: 1.0
|
||||||
|
|
||||||
model:
|
model:
|
||||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||||
@@ -43,20 +51,21 @@ model:
|
|||||||
input_dim: 1
|
input_dim: 1
|
||||||
hidden_dim: 16
|
hidden_dim: 16
|
||||||
output_dim: 1
|
output_dim: 1
|
||||||
n_layers: 8
|
n_layers: 32
|
||||||
unrolling_steps: 5
|
unrolling_steps: 5
|
||||||
|
|
||||||
data:
|
data:
|
||||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||||
init_args:
|
init_args:
|
||||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||||
split_name: "100_samples_easy"
|
split_name: "easy.refined"
|
||||||
|
n_elements: 100
|
||||||
batch_size: 16
|
batch_size: 16
|
||||||
train_size: 0.7
|
train_size: 0.7
|
||||||
val_size: 0.2
|
val_size: 0.2
|
||||||
test_size: 0.1
|
test_size: 0.1
|
||||||
build_radial_graph: false
|
build_radial_graph: false
|
||||||
remove_boundary_edges: true
|
remove_boundary_edges: true
|
||||||
start_unrolling_steps: 5
|
unrolling_steps: 5
|
||||||
optimizer: null
|
optimizer: null
|
||||||
lr_scheduler: null
|
lr_scheduler: null
|
||||||
@@ -10,12 +10,12 @@ trainer:
|
|||||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||||
init_args:
|
init_args:
|
||||||
save_dir: logs.autoregressive.wandb
|
save_dir: logs.autoregressive.wandb
|
||||||
project: "thermal-conduction-unsteady"
|
project: "thermal-conduction-unsteady-5.steps"
|
||||||
name: "refined"
|
name: "8_layer_16_hidden"
|
||||||
callbacks:
|
callbacks:
|
||||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||||
init_args:
|
init_args:
|
||||||
dirpath: logs.autoregressive.wandb/refined/checkpoints
|
dirpath: logs.autoregressive.wandb/8_refined/checkpoints
|
||||||
monitor: val/loss
|
monitor: val/loss
|
||||||
mode: min
|
mode: min
|
||||||
save_top_k: 1
|
save_top_k: 1
|
||||||
@@ -24,7 +24,7 @@ trainer:
|
|||||||
init_args:
|
init_args:
|
||||||
monitor: val/loss
|
monitor: val/loss
|
||||||
mode: min
|
mode: min
|
||||||
patience: 10
|
patience: 20
|
||||||
verbose: false
|
verbose: false
|
||||||
max_epochs: 1000
|
max_epochs: 1000
|
||||||
min_epochs: null
|
min_epochs: null
|
||||||
@@ -32,7 +32,7 @@ trainer:
|
|||||||
min_steps: null
|
min_steps: null
|
||||||
overfit_batches: 0.0
|
overfit_batches: 0.0
|
||||||
log_every_n_steps: null
|
log_every_n_steps: null
|
||||||
accumulate_grad_batches: 2
|
accumulate_grad_batches: 1
|
||||||
default_root_dir: null
|
default_root_dir: null
|
||||||
|
|
||||||
model:
|
model:
|
||||||
@@ -50,13 +50,14 @@ data:
|
|||||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||||
init_args:
|
init_args:
|
||||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||||
split_name: "100_samples_easy_refined"
|
split_name: "easy.refined"
|
||||||
batch_size: 16
|
n_elements: 100
|
||||||
|
batch_size: 32
|
||||||
train_size: 0.7
|
train_size: 0.7
|
||||||
val_size: 0.2
|
val_size: 0.2
|
||||||
test_size: 0.1
|
test_size: 0.1
|
||||||
build_radial_graph: false
|
build_radial_graph: false
|
||||||
remove_boundary_edges: true
|
remove_boundary_edges: true
|
||||||
start_unrolling_steps: 5
|
unrolling_steps: 5
|
||||||
optimizer: null
|
optimizer: null
|
||||||
lr_scheduler: null
|
lr_scheduler: null
|
||||||
@@ -1,62 +0,0 @@
|
|||||||
# lightning.pytorch==2.5.5
|
|
||||||
seed_everything: 1999
|
|
||||||
trainer:
|
|
||||||
accelerator: gpu
|
|
||||||
strategy: auto
|
|
||||||
devices: 1
|
|
||||||
num_nodes: 1
|
|
||||||
precision: null
|
|
||||||
logger:
|
|
||||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
|
||||||
init_args:
|
|
||||||
save_dir: logs.autoregressive.wandb
|
|
||||||
project: "thermal-conduction-unsteady"
|
|
||||||
name: "16_8_refined"
|
|
||||||
callbacks:
|
|
||||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
|
||||||
init_args:
|
|
||||||
dirpath: logs.autoregressive.wandb/16_8_refined/checkpoints
|
|
||||||
monitor: val/loss
|
|
||||||
mode: min
|
|
||||||
save_top_k: 1
|
|
||||||
filename: best-checkpoint
|
|
||||||
- class_path: lightning.pytorch.callbacks.EarlyStopping
|
|
||||||
init_args:
|
|
||||||
monitor: val/loss
|
|
||||||
mode: min
|
|
||||||
patience: 10
|
|
||||||
verbose: false
|
|
||||||
max_epochs: 1000
|
|
||||||
min_epochs: null
|
|
||||||
max_steps: -1
|
|
||||||
min_steps: null
|
|
||||||
overfit_batches: 0.0
|
|
||||||
log_every_n_steps: null
|
|
||||||
accumulate_grad_batches: 2
|
|
||||||
default_root_dir: null
|
|
||||||
|
|
||||||
model:
|
|
||||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
|
||||||
init_args:
|
|
||||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
|
||||||
model_init_args:
|
|
||||||
input_dim: 1
|
|
||||||
hidden_dim: 8
|
|
||||||
output_dim: 1
|
|
||||||
n_layers: 16
|
|
||||||
unrolling_steps: 5
|
|
||||||
|
|
||||||
data:
|
|
||||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
|
||||||
init_args:
|
|
||||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
|
||||||
split_name: "100_samples_easy_refined"
|
|
||||||
batch_size: 16
|
|
||||||
train_size: 0.7
|
|
||||||
val_size: 0.2
|
|
||||||
test_size: 0.1
|
|
||||||
build_radial_graph: false
|
|
||||||
remove_boundary_edges: true
|
|
||||||
start_unrolling_steps: 5
|
|
||||||
optimizer: null
|
|
||||||
lr_scheduler: null
|
|
||||||
@@ -1,64 +0,0 @@
|
|||||||
# lightning.pytorch==2.5.5
|
|
||||||
seed_everything: 1999
|
|
||||||
trainer:
|
|
||||||
accelerator: gpu
|
|
||||||
strategy: auto
|
|
||||||
devices: 1
|
|
||||||
num_nodes: 1
|
|
||||||
precision: null
|
|
||||||
logger:
|
|
||||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
|
||||||
init_args:
|
|
||||||
save_dir: logs.autoregressive.wandb/wandb
|
|
||||||
project: "thermal-conduction-unsteady"
|
|
||||||
name: "5_step_4_layers_16_hidden"
|
|
||||||
# retain: true
|
|
||||||
callbacks:
|
|
||||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
|
||||||
init_args:
|
|
||||||
dirpath: logs.autoregressive.wandb/5_step_4_layers_16_hidden/checkpoints
|
|
||||||
monitor: val/loss
|
|
||||||
mode: min
|
|
||||||
save_top_k: 1
|
|
||||||
filename: best-checkpoint
|
|
||||||
- class_path: lightning.pytorch.callbacks.EarlyStopping
|
|
||||||
init_args:
|
|
||||||
monitor: val/loss
|
|
||||||
mode: min
|
|
||||||
patience: 10
|
|
||||||
verbose: false
|
|
||||||
max_epochs: 1000
|
|
||||||
min_epochs: null
|
|
||||||
max_steps: -1
|
|
||||||
min_steps: null
|
|
||||||
overfit_batches: 0.0
|
|
||||||
log_every_n_steps: null
|
|
||||||
accumulate_grad_batches: 2
|
|
||||||
default_root_dir: null
|
|
||||||
|
|
||||||
model:
|
|
||||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
|
||||||
init_args:
|
|
||||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
|
||||||
model_init_args:
|
|
||||||
input_dim: 1
|
|
||||||
hidden_dim: 16
|
|
||||||
output_dim: 1
|
|
||||||
n_layers: 4
|
|
||||||
unrolling_steps: 5
|
|
||||||
|
|
||||||
data:
|
|
||||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
|
||||||
init_args:
|
|
||||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
|
||||||
split_name: "100_samples_easy_refined"
|
|
||||||
batch_size: 32
|
|
||||||
train_size: 0.7
|
|
||||||
val_size: 0.2
|
|
||||||
test_size: 0.1
|
|
||||||
build_radial_graph: true
|
|
||||||
radius: 0.5
|
|
||||||
remove_boundary_edges: true
|
|
||||||
start_unrolling_steps: 5
|
|
||||||
optimizer: null
|
|
||||||
lr_scheduler: null
|
|
||||||
@@ -1,62 +0,0 @@
|
|||||||
# lightning.pytorch==2.5.5
|
|
||||||
seed_everything: 1999
|
|
||||||
trainer:
|
|
||||||
accelerator: gpu
|
|
||||||
strategy: auto
|
|
||||||
devices: 1
|
|
||||||
num_nodes: 1
|
|
||||||
precision: null
|
|
||||||
logger:
|
|
||||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
|
||||||
init_args:
|
|
||||||
save_dir: logs.autoregressive.wandb
|
|
||||||
project: "thermal-conduction-unsteady"
|
|
||||||
name: "5_step_4_layers_8_hidden"
|
|
||||||
callbacks:
|
|
||||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
|
||||||
init_args:
|
|
||||||
dirpath: logs.autoregressive.wandb/5_step_4_layers_8_hidden_0.7_radius/checkpoints
|
|
||||||
monitor: val/loss
|
|
||||||
mode: min
|
|
||||||
save_top_k: 1
|
|
||||||
filename: best-checkpoint
|
|
||||||
- class_path: lightning.pytorch.callbacks.EarlyStopping
|
|
||||||
init_args:
|
|
||||||
monitor: val/loss
|
|
||||||
mode: min
|
|
||||||
patience: 10
|
|
||||||
verbose: false
|
|
||||||
max_epochs: 1000
|
|
||||||
min_epochs: null
|
|
||||||
max_steps: -1
|
|
||||||
min_steps: null
|
|
||||||
overfit_batches: 0.0
|
|
||||||
log_every_n_steps: null
|
|
||||||
accumulate_grad_batches: 1
|
|
||||||
default_root_dir: null
|
|
||||||
|
|
||||||
model:
|
|
||||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
|
||||||
init_args:
|
|
||||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
|
||||||
model_init_args:
|
|
||||||
input_dim: 1
|
|
||||||
hidden_dim: 8
|
|
||||||
output_dim: 1
|
|
||||||
n_layers: 4
|
|
||||||
unrolling_steps: 5
|
|
||||||
|
|
||||||
data:
|
|
||||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
|
||||||
init_args:
|
|
||||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
|
||||||
split_name: "100_samples_easy_refined"
|
|
||||||
batch_size: 32
|
|
||||||
train_size: 0.7
|
|
||||||
val_size: 0.2
|
|
||||||
test_size: 0.1
|
|
||||||
build_radial_graph: false
|
|
||||||
remove_boundary_edges: true
|
|
||||||
start_unrolling_steps: 5
|
|
||||||
optimizer: null
|
|
||||||
lr_scheduler: null
|
|
||||||
@@ -1,62 +0,0 @@
|
|||||||
# lightning.pytorch==2.5.5
|
|
||||||
seed_everything: 1999
|
|
||||||
trainer:
|
|
||||||
accelerator: gpu
|
|
||||||
strategy: auto
|
|
||||||
devices: 1
|
|
||||||
num_nodes: 1
|
|
||||||
precision: null
|
|
||||||
logger:
|
|
||||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
|
||||||
init_args:
|
|
||||||
save_dir: logs.autoregressive.wandb
|
|
||||||
project: "thermal-conduction-unsteady"
|
|
||||||
name: "standard"
|
|
||||||
callbacks:
|
|
||||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
|
||||||
init_args:
|
|
||||||
dirpath: logs.autoregressive.wandb/standard/checkpoints
|
|
||||||
monitor: val/loss
|
|
||||||
mode: min
|
|
||||||
save_top_k: 1
|
|
||||||
filename: best-checkpoint
|
|
||||||
- class_path: lightning.pytorch.callbacks.EarlyStopping
|
|
||||||
init_args:
|
|
||||||
monitor: val/loss
|
|
||||||
mode: min
|
|
||||||
patience: 10
|
|
||||||
verbose: false
|
|
||||||
max_epochs: 1000
|
|
||||||
min_epochs: null
|
|
||||||
max_steps: -1
|
|
||||||
min_steps: null
|
|
||||||
overfit_batches: 0.0
|
|
||||||
log_every_n_steps: null
|
|
||||||
accumulate_grad_batches: 1
|
|
||||||
default_root_dir: null
|
|
||||||
|
|
||||||
model:
|
|
||||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
|
||||||
init_args:
|
|
||||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
|
||||||
model_init_args:
|
|
||||||
input_dim: 1
|
|
||||||
hidden_dim: 8
|
|
||||||
output_dim: 1
|
|
||||||
n_layers: 8
|
|
||||||
unrolling_steps: 5
|
|
||||||
|
|
||||||
data:
|
|
||||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
|
||||||
init_args:
|
|
||||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
|
||||||
split_name: "100_samples_easy_refined"
|
|
||||||
batch_size: 32
|
|
||||||
train_size: 0.7
|
|
||||||
val_size: 0.2
|
|
||||||
test_size: 0.1
|
|
||||||
build_radial_graph: false
|
|
||||||
remove_boundary_edges: true
|
|
||||||
start_unrolling_steps: 5
|
|
||||||
optimizer: null
|
|
||||||
lr_scheduler: null
|
|
||||||
6
run.py
6
run.py
@@ -5,7 +5,11 @@ torch.set_float32_matmul_precision("medium")
|
|||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
LightningCLI(subclass_mode_data=True, subclass_mode_model=True)
|
LightningCLI(
|
||||||
|
subclass_mode_data=True,
|
||||||
|
subclass_mode_model=True,
|
||||||
|
save_config_kwargs={"overwrite": True},
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|||||||
11
submit.sh
11
submit.sh
@@ -1,8 +1,5 @@
|
|||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
# python run.py fit --config experiments/config_4_layer_8_hidden.yaml
|
export CUDA_VISIBLE_DEVICES=1
|
||||||
# python run.py fit --config experiments/config_8_layer_8_hidden.yaml
|
python run.py fit --config experiments/5_steps/config_16_layer_16_hidden_refined.yaml
|
||||||
python run.py fit --config experiments/config_8_layer_16_hidden_refined.yaml
|
python run.py fit --config experiments/5_steps/config_32_layer_16_hidden_refined.yaml
|
||||||
python run.py fit --config experiments/config_16_layer_8_hidden_refined.yaml
|
python run.py fit --config experiments/5_steps/config_8_layer_16_hidden_refined.yaml
|
||||||
python run.py fit --config experiments/config_16_layer_16_hidden_refined.yaml
|
|
||||||
python run.py fit --config experiments/config_8_layer_16_hidden.yaml
|
|
||||||
# python run.py fit --config experiments/config_4_layer_16_hidden.yaml
|
|
||||||
|
|||||||
Reference in New Issue
Block a user