Compare commits
12 Commits
2935785b31
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
| 92104a6b06 | |||
| 68a7def5e6 | |||
| db50f5ed69 | |||
| 0a034225ef | |||
|
|
4fdf817d75 | ||
|
|
a9d56a3ed9 | ||
|
|
3cc1d230e4 | ||
|
|
732d48c360 | ||
|
|
27c2aeb736 | ||
|
|
7a2316da04 | ||
|
|
c1820d5855 | ||
|
|
f2ce282a68 |
1
.gitignore
vendored
1
.gitignore
vendored
@@ -210,6 +210,7 @@ __marimo__/
|
||||
logs/
|
||||
*.log
|
||||
models/
|
||||
logs*
|
||||
|
||||
# Images
|
||||
*.png
|
||||
|
||||
@@ -15,52 +15,102 @@ def import_class(class_path: str):
|
||||
return cls
|
||||
|
||||
|
||||
def _plot_mesh(pos_, y_, y_pred_, y_true_, batch, i, batch_idx):
|
||||
for j in [0, 10, 20, 30]:
|
||||
def _plot_mesh(pos_, y_, y_pred_, y_true_, batch, cells, i, batch_idx):
|
||||
# print(pos_.shape, y_.shape, y_pred_.shape, y_true_.shape)
|
||||
for j in [0]:
|
||||
idx = (batch == j).nonzero(as_tuple=True)[0]
|
||||
y = y_[idx].detach().cpu()
|
||||
y_pred = y_pred_[idx].detach().cpu()
|
||||
pos = pos_[idx].detach().cpu()
|
||||
# print(pos.shape, y.shape, y_pred.shape)
|
||||
y_true = y_true_[idx].detach().cpu()
|
||||
y_true = torch.clamp(y_true, min=0)
|
||||
folder = f"{j:02d}_images"
|
||||
folder = f"{batch_idx:02d}_images"
|
||||
if os.path.exists(folder) is False:
|
||||
os.makedirs(folder)
|
||||
pos = pos.detach().cpu()
|
||||
tria = Triangulation(pos[:, 0], pos[:, 1])
|
||||
plt.figure(figsize=(24, 5))
|
||||
triangles = torch.vstack([cells[:, [0, 1, 2]], cells[:, [0, 2, 3]]])
|
||||
tria = Triangulation(pos[:, 0], pos[:, 1], triangles=triangles)
|
||||
plt.figure(figsize=(24, 6))
|
||||
# plt.subplot(1, 4, 1)
|
||||
# plt.tricontourf(tria, y.squeeze().numpy(), levels=100)
|
||||
# plt.colorbar()
|
||||
# plt.title("Step t-1")
|
||||
# plt.tripcolor(tria, y_pred.squeeze().numpy()
|
||||
# plt.savefig("test_scatter_step_before.png", dpi=72)
|
||||
# x = z
|
||||
plt.subplot(1, 4, 1)
|
||||
plt.tricontourf(tria, y.squeeze().numpy(), levels=100)
|
||||
plt.colorbar()
|
||||
plt.title("Step t-1")
|
||||
plt.subplot(1, 4, 2)
|
||||
plt.tricontourf(tria, y_pred.squeeze().numpy(), levels=100)
|
||||
# plt.scatter(pos[:, 0], pos[:, 1], c=y_pred.squeeze().numpy(), s=20, cmap="viridis",)
|
||||
plt.colorbar()
|
||||
plt.title("Step t Predicted")
|
||||
plt.subplot(1, 4, 3)
|
||||
plt.title(f"Prediction at timestep {i:03d}")
|
||||
plt.subplot(1, 4, 2)
|
||||
plt.tricontourf(tria, y_true.squeeze().numpy(), levels=100)
|
||||
# plt.scatter(pos[:, 0], pos[:, 1], c=y_true.squeeze().numpy(), s=20, cmap="viridis")
|
||||
plt.colorbar()
|
||||
plt.title("t True")
|
||||
plt.title("Ground Truth Steady State")
|
||||
plt.subplot(1, 4, 3)
|
||||
per_element_relative_error = torch.abs(y_pred - y_true) / (
|
||||
y_true + 1e-6
|
||||
)
|
||||
per_element_relative_error = torch.clamp(
|
||||
per_element_relative_error, max=1.0, min=0.0
|
||||
)
|
||||
plt.tricontourf(
|
||||
tria,
|
||||
per_element_relative_error.squeeze(),
|
||||
levels=100,
|
||||
vmin=0,
|
||||
vmax=1.0,
|
||||
)
|
||||
# plt.scatter(pos[:, 0], pos[:, 1], c=per_element_relative_error.squeeze().numpy(), s=20, cmap="viridis", vmin=0, vmax=1.0)
|
||||
plt.colorbar()
|
||||
plt.title("Relative Error")
|
||||
plt.subplot(1, 4, 4)
|
||||
plt.tricontourf(tria, (y_true - y_pred).squeeze().numpy(), levels=100)
|
||||
absolute_error = torch.abs(y_pred - y_true)
|
||||
plt.tricontourf(tria, absolute_error.squeeze(), levels=100)
|
||||
# plt.scatter(pos[:, 0], pos[:, 1], c=absolute_error.squeeze().numpy(), s=20, cmap="viridis")
|
||||
plt.colorbar()
|
||||
plt.title("Error")
|
||||
plt.title("Absolute Error")
|
||||
plt.suptitle("GNO", fontsize=16)
|
||||
name = f"{folder}/{j:04d}_graph_iter_{i:04d}.png"
|
||||
plt.savefig(name, dpi=72)
|
||||
plt.close()
|
||||
|
||||
|
||||
def _plot_losses(losses, batch_idx):
|
||||
folder = f"{batch_idx:02d}_images"
|
||||
plt.figure()
|
||||
plt.plot(losses)
|
||||
def _plot_losses(relative_errors, test_losses, relative_update, batch_idx):
|
||||
# folder = f"{batch_idx:02d}_images"
|
||||
plt.figure(figsize=(18, 6))
|
||||
plt.subplot(1, 3, 1)
|
||||
for i, losses in enumerate(test_losses):
|
||||
plt.plot(losses)
|
||||
if i == 3:
|
||||
break
|
||||
plt.yscale("log")
|
||||
plt.xlabel("Iteration")
|
||||
plt.ylabel("Loss")
|
||||
plt.ylabel("Test Loss")
|
||||
plt.title("Test Loss over Iterations")
|
||||
plt.grid(True)
|
||||
file_name = f"{folder}/test_loss.png"
|
||||
plt.subplot(1, 3, 2)
|
||||
for i, losses in enumerate(relative_errors):
|
||||
plt.plot(losses)
|
||||
if i == 3:
|
||||
break
|
||||
plt.yscale("log")
|
||||
plt.xlabel("Iteration")
|
||||
plt.ylabel("Relative Error")
|
||||
plt.title("Relative error over Iterations")
|
||||
plt.grid(True)
|
||||
plt.subplot(1, 3, 3)
|
||||
for i, updates in enumerate(relative_update):
|
||||
plt.plot(updates)
|
||||
if i == 3:
|
||||
break
|
||||
plt.yscale("log")
|
||||
plt.xlabel("Iteration")
|
||||
plt.ylabel("Relative Update")
|
||||
plt.title("Relative update over Iterations")
|
||||
plt.grid(True)
|
||||
file_name = f"test_errors.png"
|
||||
plt.savefig(file_name, dpi=300)
|
||||
plt.close()
|
||||
|
||||
@@ -80,6 +130,9 @@ class GraphSolver(LightningModule):
|
||||
# print(f"Param: {param[0]}")
|
||||
self.loss = loss if loss is not None else torch.nn.MSELoss()
|
||||
self.unrolling_steps = unrolling_steps
|
||||
self.test_losses = []
|
||||
self.test_relative_errors = []
|
||||
self.test_relative_updates = []
|
||||
|
||||
def _compute_loss(self, x, y):
|
||||
return self.loss(x, y)
|
||||
@@ -116,13 +169,12 @@ class GraphSolver(LightningModule):
|
||||
return out
|
||||
|
||||
def _preprocess_batch(self, batch: Batch):
|
||||
x, y, c, edge_index, edge_attr, nodal_area = (
|
||||
x, y, c, edge_index, edge_attr = (
|
||||
batch.x,
|
||||
batch.y,
|
||||
batch.c,
|
||||
batch.edge_index,
|
||||
batch.edge_attr,
|
||||
batch.nodal_area,
|
||||
)
|
||||
edge_attr = 1 / edge_attr
|
||||
conductivity = self._compute_c_ij(c, edge_index)
|
||||
@@ -133,35 +185,9 @@ class GraphSolver(LightningModule):
|
||||
x, y, edge_index, edge_attr, conductivity = self._preprocess_batch(
|
||||
batch
|
||||
)
|
||||
# deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||
losses = []
|
||||
# print(x.shape, y.shape)
|
||||
# # print(torch.max(edge_index), torch.min(edge_index))
|
||||
# plt.figure()
|
||||
# plt.subplot(2,3,1)
|
||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=x.squeeze().cpu())
|
||||
# plt.subplot(2,3,2)
|
||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,0,:].squeeze().cpu())
|
||||
# plt.subplot(2,3,3)
|
||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,1,:].squeeze().cpu())
|
||||
# plt.subplot(2,3,4)
|
||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,2,:].squeeze().cpu())
|
||||
# plt.subplot(2,3,5)
|
||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,3,:].squeeze().cpu())
|
||||
# plt.subplot(2,3,6)
|
||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,4,:].squeeze().cpu())
|
||||
# plt.suptitle("Training Batch Visualization", fontsize=16)
|
||||
# plt.savefig("training_batch_visualization.png", dpi=300)
|
||||
# plt.close()
|
||||
# y = z
|
||||
pos = batch.pos
|
||||
boundary_mask = batch.boundary_mask
|
||||
boundary_values = batch.boundary_values
|
||||
# plt.scatter(pos[boundary_mask,0].cpu(), pos[boundary_mask,1].cpu(), c=boundary_values.cpu(), s=1)
|
||||
# plt.savefig("boundary_nodes.png", dpi=300)
|
||||
# y = z
|
||||
scale = 50
|
||||
for i in range(self.unrolling_steps):
|
||||
# print(f"Training step {i+1}/{self.unrolling_steps}")
|
||||
out = self._compute_model_steps(
|
||||
x,
|
||||
edge_index,
|
||||
@@ -172,15 +198,26 @@ class GraphSolver(LightningModule):
|
||||
conductivity,
|
||||
)
|
||||
x = out
|
||||
# print(out.shape, y[:, i, :].shape)
|
||||
losses.append(self.loss(out.flatten(), y[:, i, :].flatten()))
|
||||
# print(self.model.scale_edge_attr.item())
|
||||
|
||||
loss = torch.stack(losses).mean()
|
||||
# for param in self.model.parameters():
|
||||
# print(f"Param: {param.shape}, Grad: {param.grad}")
|
||||
# print(f"Param: {param[0]}")
|
||||
self._log_loss(loss, batch, "train")
|
||||
for i, layer in enumerate(self.model.layers):
|
||||
self.log(
|
||||
f"{i:03d}_alpha",
|
||||
layer.alpha,
|
||||
prog_bar=True,
|
||||
on_epoch=True,
|
||||
on_step=False,
|
||||
batch_size=int(batch.num_graphs),
|
||||
)
|
||||
self.log(
|
||||
"dt",
|
||||
self.model.dt,
|
||||
prog_bar=True,
|
||||
on_epoch=True,
|
||||
on_step=False,
|
||||
batch_size=int(batch.num_graphs),
|
||||
)
|
||||
return loss
|
||||
|
||||
def validation_step(self, batch: Batch, batch_idx):
|
||||
@@ -201,20 +238,20 @@ class GraphSolver(LightningModule):
|
||||
batch.boundary_values,
|
||||
conductivity,
|
||||
)
|
||||
if (
|
||||
batch_idx == 0
|
||||
and self.current_epoch % 10 == 0
|
||||
and self.current_epoch > 0
|
||||
):
|
||||
_plot_mesh(
|
||||
batch.pos,
|
||||
x,
|
||||
out,
|
||||
y[:, i, :],
|
||||
batch.batch,
|
||||
i,
|
||||
self.current_epoch,
|
||||
)
|
||||
# if (
|
||||
# batch_idx == 0
|
||||
# and self.current_epoch % 10 == 0
|
||||
# and self.current_epoch > 0
|
||||
# ):
|
||||
# _plot_mesh(
|
||||
# batch.pos,
|
||||
# x,
|
||||
# out,
|
||||
# y[:, i, :],
|
||||
# batch.batch,
|
||||
# i,
|
||||
# self.current_epoch,
|
||||
# )
|
||||
x = out
|
||||
losses.append(self.loss(out, y[:, i, :]))
|
||||
|
||||
@@ -222,8 +259,81 @@ class GraphSolver(LightningModule):
|
||||
self._log_loss(loss, batch, "val")
|
||||
return loss
|
||||
|
||||
def _check_convergence(self, y_new, y_old, tol=1e-4):
|
||||
l2_norm = torch.norm(y_new - y_old, p=2)
|
||||
y_old_norm = torch.norm(y_old, p=2)
|
||||
rel_error = l2_norm / (y_old_norm)
|
||||
return rel_error.item() < tol, rel_error.item()
|
||||
|
||||
def test_step(self, batch: Batch, batch_idx):
|
||||
pass
|
||||
x, y, edge_index, edge_attr, conductivity = self._preprocess_batch(
|
||||
batch
|
||||
)
|
||||
# deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||
losses = []
|
||||
all_losses = []
|
||||
norms = []
|
||||
s = []
|
||||
relative_updates = []
|
||||
sequence_length = y.size(1)
|
||||
y = y[:, -1, :].unsqueeze(1)
|
||||
_plot_mesh(
|
||||
batch.pos, x, x, y[:, -1, :], batch.batch, batch.cells, 0, batch_idx
|
||||
)
|
||||
for i in range(200):
|
||||
out = self._compute_model_steps(
|
||||
# torch.cat([x,pos], dim=-1),
|
||||
x,
|
||||
edge_index,
|
||||
edge_attr,
|
||||
# deg,
|
||||
batch.boundary_mask,
|
||||
batch.boundary_values,
|
||||
conductivity,
|
||||
)
|
||||
norms.append(torch.norm(out - x, p=2).item())
|
||||
converged, relative_update = self._check_convergence(out, x)
|
||||
relative_updates.append(relative_update)
|
||||
if batch_idx <= 4:
|
||||
print(f"Plotting iteration {i}, norm diff: {norms[-1]}")
|
||||
_plot_mesh(
|
||||
batch.pos,
|
||||
x,
|
||||
out,
|
||||
y[:, -1, :],
|
||||
batch.batch,
|
||||
batch.cells,
|
||||
i + 1,
|
||||
batch_idx,
|
||||
)
|
||||
x = out
|
||||
loss = self.loss(out, y[:, -1, :])
|
||||
relative_error = torch.abs(out - y[:, -1, :]) / (
|
||||
torch.abs(y[:, -1, :]) + 1e-6
|
||||
)
|
||||
mean_relative_error = relative_error.mean()
|
||||
all_losses.append(mean_relative_error.item())
|
||||
losses.append(loss)
|
||||
if converged:
|
||||
print(
|
||||
f"Test step converged at iteration {i} for batch {batch_idx}"
|
||||
)
|
||||
break
|
||||
loss = torch.stack(losses).mean()
|
||||
self.test_losses.append(losses)
|
||||
self.test_relative_errors.append(all_losses)
|
||||
self.test_relative_updates.append(relative_updates)
|
||||
self._log_loss(loss, batch, "test")
|
||||
return loss
|
||||
|
||||
def on_test_end(self):
|
||||
if len(self.test_losses) > 0:
|
||||
_plot_losses(
|
||||
self.test_relative_errors,
|
||||
self.test_losses,
|
||||
self.test_relative_updates,
|
||||
batch_idx=0,
|
||||
)
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = torch.optim.AdamW(self.parameters(), lr=1e-3)
|
||||
|
||||
@@ -82,7 +82,9 @@ class GraphDataModule(LightningDataModule):
|
||||
conductivity = torch.tensor(
|
||||
snapshot["conductivity"], dtype=torch.float32
|
||||
)
|
||||
temperature = torch.tensor(snapshot["temperature"], dtype=torch.float32)
|
||||
temperature = torch.tensor(
|
||||
snapshot["temperature"], dtype=torch.float32
|
||||
)[:50]
|
||||
|
||||
pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2]
|
||||
|
||||
|
||||
@@ -1,50 +1,20 @@
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
from lightning import LightningDataModule
|
||||
from datasets import load_dataset
|
||||
from datasets import load_dataset, concatenate_datasets
|
||||
from torch_geometric.data import Data
|
||||
from torch_geometric.loader import DataLoader
|
||||
from torch_geometric.utils import to_undirected
|
||||
from .mesh_data import MeshData
|
||||
|
||||
# from torch.utils.data import Dataset
|
||||
from torch_geometric.utils import scatter
|
||||
|
||||
|
||||
def compute_nodal_area(edge_index, edge_attr, num_nodes):
|
||||
"""
|
||||
1. Calculates Area ~ (Min Edge Length)^2
|
||||
2. Scales by Mean so average cell has size 1.0
|
||||
"""
|
||||
row, col = edge_index
|
||||
dist = edge_attr.squeeze()
|
||||
|
||||
# 1. Get 'h' (Closest neighbor distance)
|
||||
# Using 'min' filters out diagonal connections in the quad mesh
|
||||
h = scatter(dist, col, dim=0, dim_size=num_nodes, reduce="min")
|
||||
|
||||
# 2. Estimate Raw Area
|
||||
raw_area = h.pow(2)
|
||||
|
||||
# 3. Mean Scaling (The Best Normalization)
|
||||
# This keeps values near 1.0, preserving stability AND physics ratios.
|
||||
# We detach to ensure no gradients flow here (it's static data).
|
||||
mean_val = raw_area.mean().detach()
|
||||
|
||||
# Result:
|
||||
# Small cells -> approx 0.1
|
||||
# Large cells -> approx 5.0
|
||||
# Average -> 1.0
|
||||
# nodal_area = (raw_area / mean_val).unsqueeze(-1) + 1e-6
|
||||
nodal_area = raw_area
|
||||
return nodal_area.unsqueeze(-1)
|
||||
from typing import List, Union
|
||||
|
||||
|
||||
class GraphDataModule(LightningDataModule):
|
||||
def __init__(
|
||||
self,
|
||||
hf_repo: str,
|
||||
split_name: str,
|
||||
split_name: Union[str, List[str]],
|
||||
n_elements: int = None,
|
||||
train_size: float = 0.2,
|
||||
val_size: float = 0.1,
|
||||
test_size: float = 0.1,
|
||||
@@ -52,18 +22,24 @@ class GraphDataModule(LightningDataModule):
|
||||
remove_boundary_edges: bool = False,
|
||||
build_radial_graph: bool = False,
|
||||
radius: float = None,
|
||||
start_unrolling_steps: int = 1,
|
||||
unrolling_steps: int = 1,
|
||||
aggregate_timesteps: int = 1,
|
||||
min_normalized_diff: float = 1e-3,
|
||||
):
|
||||
super().__init__()
|
||||
self.hf_repo = hf_repo
|
||||
self.split_name = split_name
|
||||
self.n_elements = n_elements
|
||||
self.dataset_dict = {}
|
||||
self.train_dataset, self.val_dataset, self.test_dataset = (
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
)
|
||||
self.unrolling_steps = start_unrolling_steps
|
||||
self.unrolling_steps = unrolling_steps
|
||||
self.aggregate_timesteps = aggregate_timesteps
|
||||
self.min_normalized_diff = min_normalized_diff
|
||||
|
||||
self.geometry_dict = {}
|
||||
self.train_size = train_size
|
||||
self.val_size = val_size
|
||||
@@ -74,8 +50,33 @@ class GraphDataModule(LightningDataModule):
|
||||
self.radius = radius
|
||||
|
||||
def prepare_data(self):
|
||||
dataset = load_dataset(self.hf_repo, name="snapshots")[self.split_name]
|
||||
geometry = load_dataset(self.hf_repo, name="geometry")[self.split_name]
|
||||
if isinstance(self.split_name, list):
|
||||
dataset_list = []
|
||||
geometry_list = []
|
||||
for split in self.split_name:
|
||||
dataset_list.append(
|
||||
load_dataset(self.hf_repo, name="snapshots")[split]
|
||||
)
|
||||
geometry_list.append(
|
||||
load_dataset(self.hf_repo, name="geometry")[split]
|
||||
)
|
||||
|
||||
dataset = concatenate_datasets(dataset_list)
|
||||
geometry = concatenate_datasets(geometry_list)
|
||||
idx = torch.randperm(len(dataset))
|
||||
dataset = dataset.select(idx.tolist())
|
||||
geometry = geometry.select(idx.tolist())
|
||||
else:
|
||||
dataset = load_dataset(self.hf_repo, name="snapshots")[
|
||||
self.split_name
|
||||
]
|
||||
geometry = load_dataset(self.hf_repo, name="geometry")[
|
||||
self.split_name
|
||||
]
|
||||
|
||||
if self.n_elements is not None:
|
||||
dataset = dataset.select(range(self.n_elements))
|
||||
geometry = geometry.select(range(self.n_elements))
|
||||
|
||||
total_len = len(dataset)
|
||||
train_len = int(self.train_size * total_len)
|
||||
@@ -91,63 +92,39 @@ class GraphDataModule(LightningDataModule):
|
||||
"test": geometry.select(range(train_len + valid_len, total_len)),
|
||||
}
|
||||
|
||||
def _compute_boundary_mask(
|
||||
self, bottom_ids, right_ids, top_ids, left_ids, temperature
|
||||
):
|
||||
left_ids = left_ids[~torch.isin(left_ids, bottom_ids)]
|
||||
right_ids = right_ids[~torch.isin(right_ids, bottom_ids)]
|
||||
left_ids = left_ids[~torch.isin(left_ids, top_ids)]
|
||||
right_ids = right_ids[~torch.isin(right_ids, top_ids)]
|
||||
|
||||
bottom_bc = temperature[bottom_ids].median()
|
||||
bottom_bc_mask = torch.ones(len(bottom_ids)) * bottom_bc
|
||||
left_bc = temperature[left_ids].median()
|
||||
left_bc_mask = torch.ones(len(left_ids)) * left_bc
|
||||
right_bc = temperature[right_ids].median()
|
||||
right_bc_mask = torch.ones(len(right_ids)) * right_bc
|
||||
|
||||
boundary_values = torch.cat(
|
||||
[bottom_bc_mask, right_bc_mask, left_bc_mask], dim=0
|
||||
)
|
||||
boundary_mask = torch.cat([bottom_ids, right_ids, left_ids], dim=0)
|
||||
|
||||
return boundary_mask, boundary_values
|
||||
|
||||
def _build_dataset(
|
||||
self,
|
||||
snapshot: dict,
|
||||
geometry: dict,
|
||||
test: bool = False,
|
||||
) -> Data:
|
||||
conductivity = torch.tensor(
|
||||
geometry["conductivity"], dtype=torch.float32
|
||||
)
|
||||
temperatures = torch.tensor(
|
||||
snapshot["temperatures"], dtype=torch.float32
|
||||
)[:40]
|
||||
times = torch.tensor(snapshot["times"], dtype=torch.float32)
|
||||
|
||||
temperatures = (
|
||||
torch.tensor(snapshot["unsteady"], dtype=torch.float32)
|
||||
if not test
|
||||
else torch.stack(
|
||||
[
|
||||
torch.tensor(snapshot["unsteady"], dtype=torch.float32)[
|
||||
0, ...
|
||||
],
|
||||
torch.tensor(snapshot["steady"], dtype=torch.float32),
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
)
|
||||
if not test:
|
||||
for t in range(1, temperatures.size(0)):
|
||||
diff = temperatures[t, :] - temperatures[t - 1, :]
|
||||
norm_diff = torch.norm(diff, p=2) / torch.norm(
|
||||
temperatures[t - 1], p=2
|
||||
)
|
||||
if norm_diff < self.min_normalized_diff:
|
||||
temperatures = temperatures[: t + 1, :]
|
||||
break
|
||||
pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2]
|
||||
|
||||
bottom_ids = torch.tensor(
|
||||
geometry["bottom_boundary_ids"], dtype=torch.long
|
||||
)
|
||||
top_ids = torch.tensor(geometry["top_boundary_ids"], dtype=torch.long)
|
||||
left_ids = torch.tensor(geometry["left_boundary_ids"], dtype=torch.long)
|
||||
right_ids = torch.tensor(
|
||||
geometry["right_boundary_ids"], dtype=torch.long
|
||||
)
|
||||
|
||||
if self.build_radial_graph:
|
||||
# from pina.graph import RadiusGraph
|
||||
|
||||
# if self.radius is None:
|
||||
# raise ValueError("Radius must be specified for radial graph.")
|
||||
# edge_index = RadiusGraph.compute_radius_graph(
|
||||
# pos, radius=self.radius
|
||||
# )
|
||||
# from torch_geometric.utils import remove_self_loops
|
||||
|
||||
# edge_index, _ = remove_self_loops(edge_index)
|
||||
raise NotImplementedError(
|
||||
"Radial graph building not implemented yet."
|
||||
)
|
||||
@@ -157,18 +134,39 @@ class GraphDataModule(LightningDataModule):
|
||||
).T
|
||||
edge_index = to_undirected(edge_index, num_nodes=pos.size(0))
|
||||
|
||||
boundary_mask, boundary_values = self._compute_boundary_mask(
|
||||
bottom_ids, right_ids, top_ids, left_ids, temperatures[0, :]
|
||||
boundary_mask = torch.tensor(
|
||||
geometry["constraints_mask"], dtype=torch.int64
|
||||
)
|
||||
boundary_values = temperatures[0, boundary_mask]
|
||||
|
||||
edge_attr = torch.norm(pos[edge_index[0]] - pos[edge_index[1]], dim=1)
|
||||
nodal_area = compute_nodal_area(edge_index, edge_attr, pos.size(0))
|
||||
if self.remove_boundary_edges:
|
||||
boundary_idx = torch.unique(boundary_mask)
|
||||
edge_index_mask = ~torch.isin(edge_index[1], boundary_idx)
|
||||
edge_index = edge_index[:, edge_index_mask]
|
||||
edge_attr = edge_attr[edge_index_mask]
|
||||
n_data = temperatures.size(0) - self.unrolling_steps
|
||||
|
||||
n_data = max(temperatures.size(0) - self.unrolling_steps, 1)
|
||||
data = []
|
||||
|
||||
if test:
|
||||
cells = geometry.get("cells", None)
|
||||
if cells is not None:
|
||||
cells = torch.tensor(cells, dtype=torch.int64)
|
||||
data.append(
|
||||
MeshData(
|
||||
x=temperatures[0, :].unsqueeze(-1),
|
||||
y=temperatures[1:2, :].unsqueeze(-1).permute(1, 0, 2),
|
||||
c=conductivity.unsqueeze(-1),
|
||||
edge_index=edge_index,
|
||||
pos=pos,
|
||||
edge_attr=edge_attr,
|
||||
boundary_mask=boundary_mask,
|
||||
boundary_values=boundary_values,
|
||||
cells=cells,
|
||||
)
|
||||
)
|
||||
return data
|
||||
for i in range(n_data):
|
||||
x = temperatures[i, :].unsqueeze(-1)
|
||||
y = (
|
||||
@@ -186,7 +184,6 @@ class GraphDataModule(LightningDataModule):
|
||||
edge_attr=edge_attr,
|
||||
boundary_mask=boundary_mask,
|
||||
boundary_values=boundary_values,
|
||||
nodal_area=nodal_area,
|
||||
)
|
||||
)
|
||||
return data
|
||||
@@ -213,7 +210,7 @@ class GraphDataModule(LightningDataModule):
|
||||
]
|
||||
if stage == "test" or stage is None:
|
||||
self.test_data = [
|
||||
self._build_dataset(snap, geom)
|
||||
self._build_dataset(snap, geom, test=True)
|
||||
for snap, geom in tqdm(
|
||||
zip(self.dataset_dict["test"], self.geometry_dict["test"]),
|
||||
desc="Building test graphs",
|
||||
@@ -234,33 +231,36 @@ class GraphDataModule(LightningDataModule):
|
||||
# self.train_dataset = ds
|
||||
# print(type(self.train_data[0]))
|
||||
ds = [i for data in self.train_data for i in data]
|
||||
# print(type(ds[0]))
|
||||
print(
|
||||
f"\nLoading training data, using {self.unrolling_steps} unrolling steps..."
|
||||
)
|
||||
return DataLoader(
|
||||
ds,
|
||||
batch_size=self.batch_size,
|
||||
shuffle=True,
|
||||
num_workers=8,
|
||||
pin_memory=True,
|
||||
pin_memory=False,
|
||||
)
|
||||
|
||||
def val_dataloader(self):
|
||||
print(
|
||||
f"\nLoading validation data, using {self.unrolling_steps} unrolling steps..."
|
||||
)
|
||||
ds = [i for data in self.val_data for i in data]
|
||||
return DataLoader(
|
||||
ds,
|
||||
batch_size=128,
|
||||
shuffle=False,
|
||||
num_workers=8,
|
||||
pin_memory=True,
|
||||
pin_memory=False,
|
||||
)
|
||||
|
||||
def test_dataloader(self):
|
||||
ds = self.create_autoregressive_datasets(
|
||||
dataset="test", no_unrolling=True
|
||||
)
|
||||
ds = [i for data in self.test_data for i in data]
|
||||
return DataLoader(
|
||||
ds,
|
||||
batch_size=self.batch_size,
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
num_workers=8,
|
||||
pin_memory=True,
|
||||
pin_memory=False,
|
||||
)
|
||||
|
||||
@@ -1,6 +1,28 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch_geometric.nn import MessagePassing
|
||||
from torch.nn.utils import spectral_norm
|
||||
|
||||
|
||||
class LogPhysEncoder(nn.Module):
|
||||
"""
|
||||
Processes 1/dx in log-space to handle multiple scales of geometry
|
||||
(from micro-meshes to macro-meshes) without numerical instability.
|
||||
"""
|
||||
|
||||
def __init__(self, hidden_dim):
|
||||
super().__init__()
|
||||
self.mlp = nn.Sequential(
|
||||
spectral_norm(nn.Linear(1, hidden_dim)),
|
||||
nn.GELU(),
|
||||
spectral_norm(nn.Linear(hidden_dim, 1)),
|
||||
nn.Softplus(), # Physical conductance must be positive
|
||||
)
|
||||
|
||||
def forward(self, inv_dx):
|
||||
# We use log(1/dx) to linearize the scale of different geometries
|
||||
log_inv_dx = torch.log(inv_dx + 1e-9)
|
||||
return self.mlp(log_inv_dx)
|
||||
|
||||
|
||||
class DiffusionLayer(MessagePassing):
|
||||
@@ -13,28 +35,27 @@ class DiffusionLayer(MessagePassing):
|
||||
channels: int,
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
super().__init__(aggr="add", **kwargs)
|
||||
|
||||
self.dt = nn.Parameter(torch.tensor(1e-4))
|
||||
self.conductivity_net = nn.Sequential(
|
||||
nn.Linear(channels, channels, bias=False),
|
||||
spectral_norm(nn.Linear(channels, channels, bias=False)),
|
||||
nn.GELU(),
|
||||
nn.Linear(channels, channels, bias=False),
|
||||
spectral_norm(nn.Linear(channels, channels, bias=False)),
|
||||
)
|
||||
|
||||
self.phys_encoder = nn.Sequential(
|
||||
nn.Linear(1, 8, bias=False),
|
||||
nn.Tanh(),
|
||||
nn.Linear(8, 1, bias=False),
|
||||
nn.Softplus(),
|
||||
)
|
||||
self.phys_encoder = LogPhysEncoder(hidden_dim=channels)
|
||||
|
||||
self.alpha_param = nn.Parameter(torch.tensor(1e-2))
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
return torch.clamp(self.alpha_param, min=1e-7, max=1.0)
|
||||
|
||||
def forward(self, x, edge_index, edge_weight, conductivity):
|
||||
edge_weight = edge_weight.unsqueeze(-1)
|
||||
conductance = self.phys_encoder(edge_weight)
|
||||
net_flux = self.propagate(edge_index, x=x, conductance=conductance)
|
||||
return x + ((net_flux) * self.dt)
|
||||
return x + self.alpha * net_flux
|
||||
|
||||
def message(self, x_i, x_j, conductance):
|
||||
delta = x_j - x_i
|
||||
@@ -44,15 +65,21 @@ class DiffusionLayer(MessagePassing):
|
||||
|
||||
|
||||
class DiffusionNet(nn.Module):
|
||||
def __init__(self, input_dim=1, output_dim=1, hidden_dim=8, n_layers=4):
|
||||
def __init__(
|
||||
self,
|
||||
input_dim=1,
|
||||
output_dim=1,
|
||||
hidden_dim=8,
|
||||
n_layers=4,
|
||||
shared_weights=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# Encoder: Projects input temperature to hidden feature space
|
||||
self.enc = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim, bias=True),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_dim, hidden_dim, bias=True),
|
||||
spectral_norm(nn.Linear(input_dim, hidden_dim, bias=True)),
|
||||
nn.GELU(),
|
||||
spectral_norm(nn.Linear(hidden_dim, hidden_dim, bias=True)),
|
||||
)
|
||||
|
||||
self.scale_x = nn.Parameter(torch.zeros(hidden_dim))
|
||||
@@ -60,27 +87,40 @@ class DiffusionNet(nn.Module):
|
||||
# Scale parameters for conditioning
|
||||
self.scale_edge_attr = nn.Parameter(torch.zeros(1))
|
||||
|
||||
# Stack of Diffusion Layers
|
||||
self.layers = torch.nn.ModuleList(
|
||||
[DiffusionLayer(hidden_dim) for _ in range(n_layers)]
|
||||
)
|
||||
# If shared_weights is True, use the same DiffusionLayer multiple times
|
||||
if shared_weights:
|
||||
diffusion_layer = DiffusionLayer(hidden_dim)
|
||||
self.layers = torch.nn.ModuleList(
|
||||
[diffusion_layer for _ in range(n_layers)]
|
||||
)
|
||||
# If shared_weights is False, use separate DiffusionLayers
|
||||
else:
|
||||
# Stack of Diffusion Layers
|
||||
self.layers = torch.nn.ModuleList(
|
||||
[DiffusionLayer(hidden_dim) for _ in range(n_layers)]
|
||||
)
|
||||
|
||||
# Decoder: Projects hidden features back to Temperature space
|
||||
self.dec = nn.Sequential(
|
||||
nn.Linear(hidden_dim, hidden_dim, bias=True),
|
||||
spectral_norm(nn.Linear(hidden_dim, hidden_dim, bias=True)),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_dim, output_dim, bias=True),
|
||||
spectral_norm(nn.Linear(hidden_dim, output_dim, bias=True)),
|
||||
nn.Softplus(), # Ensure positive temperature output
|
||||
)
|
||||
|
||||
self.func = torch.nn.GELU()
|
||||
|
||||
self.dt_param = nn.Parameter(torch.tensor(1e-2))
|
||||
|
||||
@property
|
||||
def dt(self):
|
||||
return torch.clamp(self.dt_param, min=1e-5, max=0.5)
|
||||
|
||||
def forward(self, x, edge_index, edge_attr, conductivity):
|
||||
# 1. Global Residual Connection setup
|
||||
# We save the input to add it back at the very end.
|
||||
# The network learns the correction (Delta T), not the absolute T.
|
||||
x_input = x
|
||||
|
||||
# 2. Encode
|
||||
h = self.enc(x) * torch.exp(self.scale_x)
|
||||
|
||||
@@ -98,5 +138,5 @@ class DiffusionNet(nn.Module):
|
||||
|
||||
# 6. Final Update (Explicit Euler Step)
|
||||
# T_new = T_old + Correction
|
||||
# return x_input + delta_x
|
||||
return delta_x
|
||||
return delta_x + x_input * self.dt
|
||||
# return delta_x
|
||||
|
||||
104
ThermalSolver/switch_dataloader_callback.py
Normal file
104
ThermalSolver/switch_dataloader_callback.py
Normal file
@@ -0,0 +1,104 @@
|
||||
import torch
|
||||
from lightning.pytorch.callbacks import Callback
|
||||
import os
|
||||
|
||||
|
||||
class SwitchDataLoaderCallback(Callback):
|
||||
def __init__(
|
||||
self,
|
||||
ckpt_path,
|
||||
increase_unrolling_steps_by,
|
||||
increase_unrolling_steps_every,
|
||||
max_unrolling_steps=10,
|
||||
patience=None,
|
||||
last_patience=None,
|
||||
metric="val/loss",
|
||||
):
|
||||
super().__init__()
|
||||
self.ckpt_path = ckpt_path
|
||||
if os.path.exists(ckpt_path) is False:
|
||||
os.makedirs(ckpt_path)
|
||||
self.increase_unrolling_steps_by = increase_unrolling_steps_by
|
||||
self.increase_unrolling_steps_every = increase_unrolling_steps_every
|
||||
self.max_unrolling_steps = max_unrolling_steps
|
||||
self.metric = metric
|
||||
self.actual_loss = torch.inf
|
||||
if patience is not None:
|
||||
self.patience = patience
|
||||
if last_patience is not None:
|
||||
self.last_patience = last_patience
|
||||
self.no_improvement_epochs = 0
|
||||
self.last_step_reached = False
|
||||
|
||||
def on_validation_epoch_end(self, trainer, pl_module):
|
||||
self._metric_tracker(trainer, pl_module)
|
||||
if self.last_step_reached is False:
|
||||
self._unrolling_steps_handler(pl_module, trainer)
|
||||
else:
|
||||
if self.no_improvement_epochs >= self.last_patience:
|
||||
trainer.should_stop = True
|
||||
|
||||
def _metric_tracker(self, trainer, pl_module):
|
||||
if trainer.callback_metrics.get(self.metric) < self.actual_loss:
|
||||
self.actual_loss = trainer.callback_metrics.get(self.metric)
|
||||
self._save_model(pl_module, trainer)
|
||||
self.no_improvement_epochs = 0
|
||||
print(f"\nNew best {self.metric}: {self.actual_loss:.4f}")
|
||||
else:
|
||||
self.no_improvement_epochs += 1
|
||||
print(
|
||||
f"\nNo improvement in {self.metric} for {self.no_improvement_epochs} epochs."
|
||||
)
|
||||
|
||||
def _should_reload_dataloader(self, trainer):
|
||||
if self.patience is not None:
|
||||
print(
|
||||
f"Checking patience: {self.no_improvement_epochs} / {self.patience}"
|
||||
)
|
||||
if self.no_improvement_epochs >= self.patience:
|
||||
return True
|
||||
elif (
|
||||
trainer.current_epoch + 1 % self.increase_unrolling_steps_every == 0
|
||||
):
|
||||
print("Reached scheduled epoch for increasing unrolling steps.")
|
||||
return True
|
||||
return False
|
||||
|
||||
def _unrolling_steps_handler(self, pl_module, trainer):
|
||||
if self._should_reload_dataloader(trainer):
|
||||
self._load_model(pl_module)
|
||||
if pl_module.unrolling_steps >= self.max_unrolling_steps:
|
||||
return
|
||||
pl_module.unrolling_steps += self.increase_unrolling_steps_by
|
||||
trainer.datamodule.unrolling_steps = pl_module.unrolling_steps
|
||||
print(f"Incremented unrolling steps to {pl_module.unrolling_steps}")
|
||||
trainer.datamodule.setup(stage="fit")
|
||||
trainer.manual_dataloader_reload()
|
||||
self.actual_loss = torch.inf
|
||||
if pl_module.unrolling_steps >= self.max_unrolling_steps:
|
||||
print(
|
||||
"Reached max unrolling steps. Stopping further increments."
|
||||
)
|
||||
self.last_step_reached = True
|
||||
|
||||
def _save_model(self, pl_module, trainer):
|
||||
pt_path = os.path.join(
|
||||
self.ckpt_path,
|
||||
f"{pl_module.unrolling_steps}_unrolling_best_model.pt",
|
||||
)
|
||||
torch.save(pl_module.state_dict(), pt_path) # <--- CHANGED THIS
|
||||
ckpt_path = os.path.join(
|
||||
self.ckpt_path,
|
||||
f"{pl_module.unrolling_steps}_unrolling_best_checkpoint.ckpt",
|
||||
)
|
||||
trainer.save_checkpoint(ckpt_path, weights_only=False)
|
||||
|
||||
def _load_model(self, pl_module):
|
||||
pt_path = os.path.join(
|
||||
self.ckpt_path,
|
||||
f"{pl_module.unrolling_steps}_unrolling_best_model.pt",
|
||||
)
|
||||
pl_module.load_state_dict(torch.load(pt_path, weights_only=True))
|
||||
print(
|
||||
f"Loaded model weights from {pt_path} for unrolling steps = {pl_module.unrolling_steps}"
|
||||
)
|
||||
@@ -0,0 +1,72 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady-10.steps"
|
||||
name: "16_layer_16_hidden.adaptive_refined"
|
||||
callbacks:
|
||||
# - class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
# init_args:
|
||||
# dirpath: logs.autoregressive.wandb/16_refined.10_steps/checkpoints
|
||||
# monitor: val/loss
|
||||
# mode: min
|
||||
# save_top_k: 1
|
||||
# filename: best-checkpoint
|
||||
# - class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
# init_args:
|
||||
# monitor: val/loss
|
||||
# mode: min
|
||||
# patience: 30
|
||||
# verbose: false
|
||||
- class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
|
||||
init_args:
|
||||
increase_unrolling_steps_by: 4
|
||||
patience: 5
|
||||
last_patience: 15
|
||||
max_unrolling_steps: 10
|
||||
ckpt_path: logs.autoregressive.wandb/10_steps/basic.adaptive_refined/16_layer_16_hidden/
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: 0
|
||||
accumulate_grad_batches: 1
|
||||
default_root_dir: null
|
||||
gradient_clip_val: 1.0
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
||||
model_init_args:
|
||||
input_dim: 1
|
||||
hidden_dim: 16
|
||||
output_dim: 1
|
||||
n_layers: 16
|
||||
unrolling_steps: 2
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "3_stripes.basic.1_adaptive_refined"
|
||||
n_elements: 100
|
||||
batch_size: 24
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
unrolling_steps: 2
|
||||
min_normalized_diff: 1e-4
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
@@ -10,30 +10,25 @@ trainer:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady"
|
||||
name: "5_step_4_layers_8_hidden"
|
||||
project: "thermal-conduction-unsteady-10.steps"
|
||||
name: "16_layer_16_hidden.adaptive_refined.combined"
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
- class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
|
||||
init_args:
|
||||
dirpath: logs.autoregressive.wandb/5_step_4_layers_8_hidden_0.7_radius/checkpoints
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
filename: best-checkpoint
|
||||
- class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 10
|
||||
verbose: false
|
||||
increase_unrolling_steps_by: 4
|
||||
patience: 5
|
||||
last_patience: 10
|
||||
max_unrolling_steps: 10
|
||||
ckpt_path: logs.autoregressive.wandb/10_steps/basic.adaptive_refined.combined/16_layer_16_hidden/
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
log_every_n_steps: 0
|
||||
accumulate_grad_batches: 1
|
||||
default_root_dir: null
|
||||
gradient_clip_val: 1.0
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
@@ -41,22 +36,28 @@ model:
|
||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
||||
model_init_args:
|
||||
input_dim: 1
|
||||
hidden_dim: 8
|
||||
hidden_dim: 16
|
||||
output_dim: 1
|
||||
n_layers: 4
|
||||
unrolling_steps: 5
|
||||
|
||||
n_layers: 16
|
||||
unrolling_steps: 2
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "100_samples_easy_refined"
|
||||
batch_size: 32
|
||||
split_name:
|
||||
- "4_stripes.basic.1_adaptive_refined"
|
||||
- "3_stripes.basic.1_adaptive_refined"
|
||||
- "2_stripes.basic.1_adaptive_refined"
|
||||
n_elements: 100
|
||||
batch_size: 24
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
start_unrolling_steps: 5
|
||||
unrolling_steps: 2
|
||||
min_normalized_diff: 1e-4
|
||||
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
lr_scheduler: null
|
||||
72
experiments/10_steps/config_16_layer_16_hidden_refined.yaml
Normal file
72
experiments/10_steps/config_16_layer_16_hidden_refined.yaml
Normal file
@@ -0,0 +1,72 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady-10.steps"
|
||||
name: "16_layer_16_hidden.refined"
|
||||
callbacks:
|
||||
# - class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
# init_args:
|
||||
# dirpath: logs.autoregressive.wandb/16_refined.10_steps/checkpoints
|
||||
# monitor: val/loss
|
||||
# mode: min
|
||||
# save_top_k: 1
|
||||
# filename: best-checkpoint
|
||||
# - class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
# init_args:
|
||||
# monitor: val/loss
|
||||
# mode: min
|
||||
# patience: 30
|
||||
# verbose: false
|
||||
- class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
|
||||
init_args:
|
||||
increase_unrolling_steps_by: 4
|
||||
patience: 5
|
||||
last_patience: 15
|
||||
max_unrolling_steps: 10
|
||||
ckpt_path: logs.autoregressive.wandb/10_steps/basic.refined/16_layer_16_hidden/
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: 0
|
||||
accumulate_grad_batches: 1
|
||||
default_root_dir: null
|
||||
gradient_clip_val: 1.0
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
||||
model_init_args:
|
||||
input_dim: 1
|
||||
hidden_dim: 16
|
||||
output_dim: 1
|
||||
n_layers: 16
|
||||
unrolling_steps: 2
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "3_stripes.basic.refined"
|
||||
n_elements: 50
|
||||
batch_size: 24
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
unrolling_steps: 2
|
||||
min_normalized_diff: 1e-4
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
@@ -0,0 +1,77 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady-10.steps"
|
||||
name: "16_layer_16_hidden.refined.combined"
|
||||
callbacks:
|
||||
# - class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
# init_args:
|
||||
# dirpath: logs.autoregressive.wandb/16_refined.10_steps/checkpoints
|
||||
# monitor: val/loss
|
||||
# mode: min
|
||||
# save_top_k: 1
|
||||
# filename: best-checkpoint
|
||||
# - class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
# init_args:
|
||||
# monitor: val/loss
|
||||
# mode: min
|
||||
# patience: 30
|
||||
# verbose: false
|
||||
- class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
|
||||
init_args:
|
||||
increase_unrolling_steps_by: 4
|
||||
patience: 5
|
||||
last_patience: 10
|
||||
max_unrolling_steps: 10
|
||||
ckpt_path: logs.autoregressive.wandb/10_steps/basic.refined.combined/16_layer_16_hidden/
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: 0
|
||||
accumulate_grad_batches: 1
|
||||
default_root_dir: null
|
||||
gradient_clip_val: 1.0
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
||||
model_init_args:
|
||||
input_dim: 1
|
||||
hidden_dim: 16
|
||||
output_dim: 1
|
||||
n_layers: 16
|
||||
unrolling_steps: 10
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name:
|
||||
- "4_stripes.basic.refined"
|
||||
- "3_stripes.basic.refined"
|
||||
- "2_stripes.basic.refined"
|
||||
n_elements: 75
|
||||
batch_size: 24
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
unrolling_steps: 10
|
||||
min_normalized_diff: 1e-4
|
||||
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
ckpt_path: logs.autoregressive.wandb/10_steps/basic.refined.combined/16_layer_16_hidden/6_unrolling_best_checkpoint.ckpt
|
||||
@@ -0,0 +1,72 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady-10.steps"
|
||||
name: "16_layer_16_hidden.refined.star"
|
||||
callbacks:
|
||||
# - class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
# init_args:
|
||||
# dirpath: logs.autoregressive.wandb/16_refined.10_steps/checkpoints
|
||||
# monitor: val/loss
|
||||
# mode: min
|
||||
# save_top_k: 1
|
||||
# filename: best-checkpoint
|
||||
# - class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
# init_args:
|
||||
# monitor: val/loss
|
||||
# mode: min
|
||||
# patience: 30
|
||||
# verbose: false
|
||||
- class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
|
||||
init_args:
|
||||
increase_unrolling_steps_by: 4
|
||||
patience: 5
|
||||
last_patience: 15
|
||||
max_unrolling_steps: 10
|
||||
ckpt_path: logs.autoregressive.wandb/10_steps/basic.refined.star/16_layer_16_hidden/
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: 0
|
||||
accumulate_grad_batches: 1
|
||||
default_root_dir: null
|
||||
gradient_clip_val: 1.0
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
||||
model_init_args:
|
||||
input_dim: 1
|
||||
hidden_dim: 16
|
||||
output_dim: 1
|
||||
n_layers: 16
|
||||
unrolling_steps: 2
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "3_stripes.star"
|
||||
n_elements: 100
|
||||
batch_size: 24
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
unrolling_steps: 2
|
||||
min_normalized_diff: 1e-4
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
72
experiments/10_steps/config_16_layer_16_hidden_star.yaml
Normal file
72
experiments/10_steps/config_16_layer_16_hidden_star.yaml
Normal file
@@ -0,0 +1,72 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady-10.steps"
|
||||
name: "16_layer_16_hidden.star"
|
||||
callbacks:
|
||||
# - class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
# init_args:
|
||||
# dirpath: logs.autoregressive.wandb/16_refined.10_steps/checkpoints
|
||||
# monitor: val/loss
|
||||
# mode: min
|
||||
# save_top_k: 1
|
||||
# filename: best-checkpoint
|
||||
# - class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
# init_args:
|
||||
# monitor: val/loss
|
||||
# mode: min
|
||||
# patience: 30
|
||||
# verbose: false
|
||||
- class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
|
||||
init_args:
|
||||
increase_unrolling_steps_by: 4
|
||||
patience: 5
|
||||
last_patience: 15
|
||||
max_unrolling_steps: 10
|
||||
ckpt_path: logs.autoregressive.wandb/10_steps/basic.star/16_layer_16_hidden/
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: 0
|
||||
accumulate_grad_batches: 1
|
||||
default_root_dir: null
|
||||
gradient_clip_val: 1.0
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
||||
model_init_args:
|
||||
input_dim: 1
|
||||
hidden_dim: 16
|
||||
output_dim: 1
|
||||
n_layers: 16
|
||||
unrolling_steps: 2
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "3_stripes.star.refined"
|
||||
n_elements: 100
|
||||
batch_size: 24
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
unrolling_steps: 2
|
||||
min_normalized_diff: 1e-4
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
@@ -0,0 +1,75 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady-10.steps"
|
||||
name: "16_layer_16_hidden.star.combined"
|
||||
callbacks:
|
||||
# - class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
# init_args:
|
||||
# dirpath: logs.autoregressive.wandb/16_refined.10_steps/checkpoints
|
||||
# monitor: val/loss
|
||||
# mode: min
|
||||
# save_top_k: 1
|
||||
# filename: best-checkpoint
|
||||
# - class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
# init_args:
|
||||
# monitor: val/loss
|
||||
# mode: min
|
||||
# patience: 30
|
||||
# verbose: false
|
||||
- class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
|
||||
init_args:
|
||||
increase_unrolling_steps_by: 4
|
||||
patience: 5
|
||||
last_patience: 15
|
||||
max_unrolling_steps: 10
|
||||
ckpt_path: logs.autoregressive.wandb/10_steps/basic.star.combined/16_layer_16_hidden/
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: 0
|
||||
accumulate_grad_batches: 1
|
||||
default_root_dir: null
|
||||
gradient_clip_val: 1.0
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
||||
model_init_args:
|
||||
input_dim: 1
|
||||
hidden_dim: 16
|
||||
output_dim: 1
|
||||
n_layers: 16
|
||||
unrolling_steps: 2
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name:
|
||||
- "4_stripes.star"
|
||||
- "3_stripes.star"
|
||||
- "2_stripes.star"
|
||||
n_elements: 100
|
||||
batch_size: 24
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
unrolling_steps: 2
|
||||
min_normalized_diff: 1e-4
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
72
experiments/10_steps/config_8_layer_16_hidden_star.yaml
Normal file
72
experiments/10_steps/config_8_layer_16_hidden_star.yaml
Normal file
@@ -0,0 +1,72 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady-10.steps"
|
||||
name: "8_layer_16_hidden.star"
|
||||
callbacks:
|
||||
# - class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
# init_args:
|
||||
# dirpath: logs.autoregressive.wandb/16_refined.10_steps/checkpoints
|
||||
# monitor: val/loss
|
||||
# mode: min
|
||||
# save_top_k: 1
|
||||
# filename: best-checkpoint
|
||||
# - class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
# init_args:
|
||||
# monitor: val/loss
|
||||
# mode: min
|
||||
# patience: 30
|
||||
# verbose: false
|
||||
- class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
|
||||
init_args:
|
||||
increase_unrolling_steps_by: 4
|
||||
patience: 5
|
||||
last_patience: 15
|
||||
max_unrolling_steps: 10
|
||||
ckpt_path: logs.autoregressive.wandb/10_steps/basic.star/8_layer_16_hidden/
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: 0
|
||||
accumulate_grad_batches: 1
|
||||
default_root_dir: null
|
||||
gradient_clip_val: 1.0
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
||||
model_init_args:
|
||||
input_dim: 1
|
||||
hidden_dim: 16
|
||||
output_dim: 1
|
||||
n_layers: 8
|
||||
unrolling_steps: 2
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "3_stripes.star.refined"
|
||||
n_elements: 100
|
||||
batch_size: 24
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
unrolling_steps: 2
|
||||
min_normalized_diff: 1e-4
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
@@ -0,0 +1,76 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: cpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
# logger:
|
||||
# - class_path: lightning.pytorch.loggers.WandbLogger
|
||||
# init_args:
|
||||
# save_dir: logs.autoregressive.wandb
|
||||
# project: "thermal-conduction-unsteady-10.steps"
|
||||
# name: "16_layer_16_hidden.adaptive_refined.combined"
|
||||
# callbacks:
|
||||
# - class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
# init_args:
|
||||
# dirpath: logs.autoregressive.wandb/16_refined.10_steps/checkpoints
|
||||
# monitor: val/loss
|
||||
# mode: min
|
||||
# save_top_k: 1
|
||||
# filename: best-checkpoint
|
||||
# - class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
# init_args:
|
||||
# monitor: val/loss
|
||||
# mode: min
|
||||
# patience: 30
|
||||
# verbose: false
|
||||
# - class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
|
||||
# init_args:
|
||||
# increase_unrolling_steps_by: 4
|
||||
# patience: 15
|
||||
# last_patience: 20
|
||||
# max_unrolling_steps: 10
|
||||
# ckpt_path: logs.autoregressive.wandb/10_steps/basic.adaptive_refined.combined/16_layer_16_hidden/
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: 0
|
||||
accumulate_grad_batches: 1
|
||||
default_root_dir: null
|
||||
gradient_clip_val: 1.0
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
||||
model_init_args:
|
||||
input_dim: 1
|
||||
hidden_dim: 16
|
||||
output_dim: 1
|
||||
n_layers: 16
|
||||
unrolling_steps: 2
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name:
|
||||
# - "2_stripes.basic.refined"
|
||||
# - "3_stripes.basic.refined"
|
||||
# - "4_stripes.basic.1_adaptive_refined"
|
||||
- "3_stripes.star"
|
||||
n_elements: 50
|
||||
batch_size: 32
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
unrolling_steps: 2
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
ckpt_path: /home/folivo/storage/thermal-conduction-ml/logs.autoregressive.wandb/10_steps/basic.star.combined/16_layer_16_hidden/10_unrolling_best_checkpoint.ckpt
|
||||
@@ -10,8 +10,8 @@ trainer:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady"
|
||||
name: "16_refined"
|
||||
project: "thermal-conduction-unsteady-5.steps"
|
||||
name: "16_layer_16_hidden"
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
@@ -24,16 +24,24 @@ trainer:
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 10
|
||||
patience: 30
|
||||
verbose: false
|
||||
# - class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
|
||||
# init_args:
|
||||
# increase_unrolling_steps_by: 5
|
||||
# patience: 10
|
||||
# last_patience: 15
|
||||
# max_unrolling_steps: 20
|
||||
# ckpt_path: logs.autoregressive.wandb/16_16_refined/checkpoints
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
accumulate_grad_batches: 4
|
||||
log_every_n_steps: 0
|
||||
accumulate_grad_batches: 1
|
||||
default_root_dir: null
|
||||
gradient_clip_val: 1.0
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
@@ -45,18 +53,19 @@ model:
|
||||
output_dim: 1
|
||||
n_layers: 16
|
||||
unrolling_steps: 5
|
||||
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "100_samples_easy_refined"
|
||||
batch_size: 8
|
||||
split_name: "basic.refined"
|
||||
n_elements: 100
|
||||
batch_size: 32
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
start_unrolling_steps: 5
|
||||
unrolling_steps: 5
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
@@ -10,12 +10,12 @@ trainer:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady"
|
||||
name: "standard"
|
||||
project: "thermal-conduction-unsteady-5.steps"
|
||||
name: "32_layer_16_hidden"
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
dirpath: logs.autoregressive.wandb/standard/checkpoints
|
||||
dirpath: logs.autoregressive.wandb/32_refined/checkpoints
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
@@ -24,16 +24,24 @@ trainer:
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 10
|
||||
patience: 30
|
||||
verbose: false
|
||||
# - class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
|
||||
# init_args:
|
||||
# increase_unrolling_steps_by: 5
|
||||
# patience: 10
|
||||
# last_patience: 15
|
||||
# max_unrolling_steps: 20
|
||||
# ckpt_path: logs.autoregressive.wandb/16_16_refined/checkpoints
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
log_every_n_steps: 0
|
||||
accumulate_grad_batches: 1
|
||||
default_root_dir: null
|
||||
gradient_clip_val: 1.0
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
@@ -41,22 +49,23 @@ model:
|
||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
||||
model_init_args:
|
||||
input_dim: 1
|
||||
hidden_dim: 8
|
||||
hidden_dim: 16
|
||||
output_dim: 1
|
||||
n_layers: 8
|
||||
n_layers: 32
|
||||
unrolling_steps: 5
|
||||
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "100_samples_easy_refined"
|
||||
batch_size: 32
|
||||
split_name: "basic.refined"
|
||||
n_elements: 100
|
||||
batch_size: 24
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
start_unrolling_steps: 5
|
||||
unrolling_steps: 5
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
@@ -10,12 +10,12 @@ trainer:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady"
|
||||
name: "refined"
|
||||
project: "thermal-conduction-unsteady-5.steps"
|
||||
name: "8_layer_16_hidden"
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
dirpath: logs.autoregressive.wandb/refined/checkpoints
|
||||
dirpath: logs.autoregressive.wandb/8_refined/checkpoints
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
@@ -24,7 +24,7 @@ trainer:
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 10
|
||||
patience: 30
|
||||
verbose: false
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
@@ -32,7 +32,7 @@ trainer:
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
accumulate_grad_batches: 2
|
||||
accumulate_grad_batches: 1
|
||||
default_root_dir: null
|
||||
|
||||
model:
|
||||
@@ -50,13 +50,14 @@ data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "100_samples_easy_refined"
|
||||
batch_size: 16
|
||||
split_name: "basic.refined"
|
||||
n_elements: 100
|
||||
batch_size: 32
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
start_unrolling_steps: 5
|
||||
unrolling_steps: 5
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
@@ -1,62 +0,0 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady"
|
||||
name: "16_8_refined"
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
dirpath: logs.autoregressive.wandb/16_8_refined/checkpoints
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
filename: best-checkpoint
|
||||
- class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 10
|
||||
verbose: false
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
accumulate_grad_batches: 2
|
||||
default_root_dir: null
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
||||
model_init_args:
|
||||
input_dim: 1
|
||||
hidden_dim: 8
|
||||
output_dim: 1
|
||||
n_layers: 16
|
||||
unrolling_steps: 5
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "100_samples_easy_refined"
|
||||
batch_size: 16
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
start_unrolling_steps: 5
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
@@ -1,64 +0,0 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb/wandb
|
||||
project: "thermal-conduction-unsteady"
|
||||
name: "5_step_4_layers_16_hidden"
|
||||
# retain: true
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
dirpath: logs.autoregressive.wandb/5_step_4_layers_16_hidden/checkpoints
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
filename: best-checkpoint
|
||||
- class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 10
|
||||
verbose: false
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
accumulate_grad_batches: 2
|
||||
default_root_dir: null
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
||||
model_init_args:
|
||||
input_dim: 1
|
||||
hidden_dim: 16
|
||||
output_dim: 1
|
||||
n_layers: 4
|
||||
unrolling_steps: 5
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "100_samples_easy_refined"
|
||||
batch_size: 32
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: true
|
||||
radius: 0.5
|
||||
remove_boundary_edges: true
|
||||
start_unrolling_steps: 5
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
@@ -1,62 +0,0 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady"
|
||||
name: "standard"
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
dirpath: logs.autoregressive.wandb/standard/checkpoints
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
filename: best-checkpoint
|
||||
- class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 10
|
||||
verbose: false
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
accumulate_grad_batches: 2
|
||||
default_root_dir: null
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
||||
model_init_args:
|
||||
input_dim: 1
|
||||
hidden_dim: 16
|
||||
output_dim: 1
|
||||
n_layers: 8
|
||||
unrolling_steps: 5
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "100_samples_easy"
|
||||
batch_size: 16
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
start_unrolling_steps: 5
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
6
run.py
6
run.py
@@ -5,7 +5,11 @@ torch.set_float32_matmul_precision("medium")
|
||||
|
||||
|
||||
def main():
|
||||
LightningCLI(subclass_mode_data=True, subclass_mode_model=True)
|
||||
LightningCLI(
|
||||
subclass_mode_data=True,
|
||||
subclass_mode_model=True,
|
||||
save_config_kwargs={"overwrite": True},
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
11
submit.sh
11
submit.sh
@@ -1,8 +1,5 @@
|
||||
#!/bin/bash
|
||||
# python run.py fit --config experiments/config_4_layer_8_hidden.yaml
|
||||
# python run.py fit --config experiments/config_8_layer_8_hidden.yaml
|
||||
python run.py fit --config experiments/config_8_layer_16_hidden_refined.yaml
|
||||
python run.py fit --config experiments/config_16_layer_8_hidden_refined.yaml
|
||||
python run.py fit --config experiments/config_16_layer_16_hidden_refined.yaml
|
||||
python run.py fit --config experiments/config_8_layer_16_hidden.yaml
|
||||
# python run.py fit --config experiments/config_4_layer_16_hidden.yaml
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
python run.py fit --config experiments/5_steps/config_16_layer_16_hidden_refined.yaml
|
||||
python run.py fit --config experiments/5_steps/config_32_layer_16_hidden_refined.yaml
|
||||
python run.py fit --config experiments/5_steps/config_8_layer_16_hidden_refined.yaml
|
||||
|
||||
Reference in New Issue
Block a user