73 lines
2.0 KiB
YAML
73 lines
2.0 KiB
YAML
# lightning.pytorch==2.5.5
|
|
seed_everything: 1999
|
|
trainer:
|
|
accelerator: gpu
|
|
strategy: auto
|
|
devices: 1
|
|
num_nodes: 1
|
|
precision: null
|
|
logger:
|
|
- class_path: lightning.pytorch.loggers.WandbLogger
|
|
init_args:
|
|
save_dir: logs.autoregressive.wandb
|
|
project: "thermal-conduction-unsteady-10.steps"
|
|
name: "16_layer_16_hidden.refined"
|
|
callbacks:
|
|
# - class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
|
# init_args:
|
|
# dirpath: logs.autoregressive.wandb/16_refined.10_steps/checkpoints
|
|
# monitor: val/loss
|
|
# mode: min
|
|
# save_top_k: 1
|
|
# filename: best-checkpoint
|
|
# - class_path: lightning.pytorch.callbacks.EarlyStopping
|
|
# init_args:
|
|
# monitor: val/loss
|
|
# mode: min
|
|
# patience: 30
|
|
# verbose: false
|
|
- class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
|
|
init_args:
|
|
increase_unrolling_steps_by: 4
|
|
patience: 5
|
|
last_patience: 15
|
|
max_unrolling_steps: 10
|
|
ckpt_path: logs.autoregressive.wandb/10_steps/basic.refined/16_layer_16_hidden/
|
|
max_epochs: 1000
|
|
min_epochs: null
|
|
max_steps: -1
|
|
min_steps: null
|
|
overfit_batches: 0.0
|
|
log_every_n_steps: 0
|
|
accumulate_grad_batches: 1
|
|
default_root_dir: null
|
|
gradient_clip_val: 1.0
|
|
|
|
model:
|
|
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
|
init_args:
|
|
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
|
model_init_args:
|
|
input_dim: 1
|
|
hidden_dim: 16
|
|
output_dim: 1
|
|
n_layers: 16
|
|
unrolling_steps: 2
|
|
|
|
data:
|
|
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
|
init_args:
|
|
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
|
split_name: "3_stripes.basic.refined"
|
|
n_elements: 50
|
|
batch_size: 24
|
|
train_size: 0.7
|
|
val_size: 0.2
|
|
test_size: 0.1
|
|
build_radial_graph: false
|
|
remove_boundary_edges: true
|
|
unrolling_steps: 2
|
|
min_normalized_diff: 1e-4
|
|
optimizer: null
|
|
lr_scheduler: null
|