Compare commits
3 Commits
2935785b31
...
7a2316da04
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
7a2316da04 | ||
|
|
c1820d5855 | ||
|
|
f2ce282a68 |
@@ -116,13 +116,12 @@ class GraphSolver(LightningModule):
|
||||
return out
|
||||
|
||||
def _preprocess_batch(self, batch: Batch):
|
||||
x, y, c, edge_index, edge_attr, nodal_area = (
|
||||
x, y, c, edge_index, edge_attr = (
|
||||
batch.x,
|
||||
batch.y,
|
||||
batch.c,
|
||||
batch.edge_index,
|
||||
batch.edge_attr,
|
||||
batch.nodal_area,
|
||||
)
|
||||
edge_attr = 1 / edge_attr
|
||||
conductivity = self._compute_c_ij(c, edge_index)
|
||||
@@ -133,34 +132,7 @@ class GraphSolver(LightningModule):
|
||||
x, y, edge_index, edge_attr, conductivity = self._preprocess_batch(
|
||||
batch
|
||||
)
|
||||
# deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||
losses = []
|
||||
# print(x.shape, y.shape)
|
||||
# # print(torch.max(edge_index), torch.min(edge_index))
|
||||
# plt.figure()
|
||||
# plt.subplot(2,3,1)
|
||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=x.squeeze().cpu())
|
||||
# plt.subplot(2,3,2)
|
||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,0,:].squeeze().cpu())
|
||||
# plt.subplot(2,3,3)
|
||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,1,:].squeeze().cpu())
|
||||
# plt.subplot(2,3,4)
|
||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,2,:].squeeze().cpu())
|
||||
# plt.subplot(2,3,5)
|
||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,3,:].squeeze().cpu())
|
||||
# plt.subplot(2,3,6)
|
||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,4,:].squeeze().cpu())
|
||||
# plt.suptitle("Training Batch Visualization", fontsize=16)
|
||||
# plt.savefig("training_batch_visualization.png", dpi=300)
|
||||
# plt.close()
|
||||
# y = z
|
||||
pos = batch.pos
|
||||
boundary_mask = batch.boundary_mask
|
||||
boundary_values = batch.boundary_values
|
||||
# plt.scatter(pos[boundary_mask,0].cpu(), pos[boundary_mask,1].cpu(), c=boundary_values.cpu(), s=1)
|
||||
# plt.savefig("boundary_nodes.png", dpi=300)
|
||||
# y = z
|
||||
scale = 50
|
||||
for i in range(self.unrolling_steps):
|
||||
out = self._compute_model_steps(
|
||||
x,
|
||||
@@ -172,15 +144,26 @@ class GraphSolver(LightningModule):
|
||||
conductivity,
|
||||
)
|
||||
x = out
|
||||
# print(out.shape, y[:, i, :].shape)
|
||||
losses.append(self.loss(out.flatten(), y[:, i, :].flatten()))
|
||||
# print(self.model.scale_edge_attr.item())
|
||||
|
||||
loss = torch.stack(losses).mean()
|
||||
# for param in self.model.parameters():
|
||||
# print(f"Param: {param.shape}, Grad: {param.grad}")
|
||||
# print(f"Param: {param[0]}")
|
||||
self._log_loss(loss, batch, "train")
|
||||
for i, layer in enumerate(self.model.layers):
|
||||
self.log(
|
||||
f"alpha_{i}",
|
||||
layer.alpha,
|
||||
prog_bar=True,
|
||||
on_epoch=True,
|
||||
on_step=False,
|
||||
batch_size=int(batch.num_graphs),
|
||||
)
|
||||
self.log(
|
||||
"dt",
|
||||
self.model.dt,
|
||||
prog_bar=True,
|
||||
on_epoch=True,
|
||||
on_step=False,
|
||||
batch_size=int(batch.num_graphs),
|
||||
)
|
||||
return loss
|
||||
|
||||
def validation_step(self, batch: Batch, batch_idx):
|
||||
@@ -222,8 +205,59 @@ class GraphSolver(LightningModule):
|
||||
self._log_loss(loss, batch, "val")
|
||||
return loss
|
||||
|
||||
def _check_convergence(self, y_pred, y_true, tol=1e-3):
|
||||
l2_norm = torch.norm(y_pred - y_true, p=2)
|
||||
y_true_norm = torch.norm(y_true, p=2)
|
||||
rel_error = l2_norm / (y_true_norm + 1e-8)
|
||||
return rel_error.item() < tol
|
||||
|
||||
def test_step(self, batch: Batch, batch_idx):
|
||||
pass
|
||||
x, y, edge_index, edge_attr, conductivity = self._preprocess_batch(
|
||||
batch
|
||||
)
|
||||
# deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||
losses = []
|
||||
all_losses = []
|
||||
norms = []
|
||||
for i in range(self.unrolling_steps):
|
||||
out = self._compute_model_steps(
|
||||
# torch.cat([x,pos], dim=-1),
|
||||
x,
|
||||
edge_index,
|
||||
edge_attr,
|
||||
# deg,
|
||||
batch.boundary_mask,
|
||||
batch.boundary_values,
|
||||
conductivity,
|
||||
)
|
||||
norms.append(torch.norm(out - x, p=2).item())
|
||||
x = out
|
||||
loss = self.loss(out, y[:, i, :])
|
||||
all_losses.append(loss.item())
|
||||
losses.append(loss)
|
||||
# if (
|
||||
# batch_idx == 0
|
||||
# and self.current_epoch % 10 == 0
|
||||
# and self.current_epoch > 0
|
||||
# ):
|
||||
# _plot_mesh(
|
||||
# batch.pos,
|
||||
# x,
|
||||
# out,
|
||||
# y[:, i, :],
|
||||
# batch.batch,
|
||||
# i,
|
||||
# self.current_epoch,
|
||||
# )
|
||||
loss = torch.stack(losses).mean()
|
||||
# if (
|
||||
# batch_idx == 0
|
||||
# and self.current_epoch % 10 == 0
|
||||
# and self.current_epoch > 0
|
||||
# ):
|
||||
_plot_losses(norms, self.current_epoch)
|
||||
self._log_loss(loss, batch, "test")
|
||||
return loss
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = torch.optim.AdamW(self.parameters(), lr=1e-3)
|
||||
|
||||
@@ -7,44 +7,13 @@ from torch_geometric.loader import DataLoader
|
||||
from torch_geometric.utils import to_undirected
|
||||
from .mesh_data import MeshData
|
||||
|
||||
# from torch.utils.data import Dataset
|
||||
from torch_geometric.utils import scatter
|
||||
|
||||
|
||||
def compute_nodal_area(edge_index, edge_attr, num_nodes):
|
||||
"""
|
||||
1. Calculates Area ~ (Min Edge Length)^2
|
||||
2. Scales by Mean so average cell has size 1.0
|
||||
"""
|
||||
row, col = edge_index
|
||||
dist = edge_attr.squeeze()
|
||||
|
||||
# 1. Get 'h' (Closest neighbor distance)
|
||||
# Using 'min' filters out diagonal connections in the quad mesh
|
||||
h = scatter(dist, col, dim=0, dim_size=num_nodes, reduce="min")
|
||||
|
||||
# 2. Estimate Raw Area
|
||||
raw_area = h.pow(2)
|
||||
|
||||
# 3. Mean Scaling (The Best Normalization)
|
||||
# This keeps values near 1.0, preserving stability AND physics ratios.
|
||||
# We detach to ensure no gradients flow here (it's static data).
|
||||
mean_val = raw_area.mean().detach()
|
||||
|
||||
# Result:
|
||||
# Small cells -> approx 0.1
|
||||
# Large cells -> approx 5.0
|
||||
# Average -> 1.0
|
||||
# nodal_area = (raw_area / mean_val).unsqueeze(-1) + 1e-6
|
||||
nodal_area = raw_area
|
||||
return nodal_area.unsqueeze(-1)
|
||||
|
||||
|
||||
class GraphDataModule(LightningDataModule):
|
||||
def __init__(
|
||||
self,
|
||||
hf_repo: str,
|
||||
split_name: str,
|
||||
n_elements: int = None,
|
||||
train_size: float = 0.2,
|
||||
val_size: float = 0.1,
|
||||
test_size: float = 0.1,
|
||||
@@ -52,18 +21,19 @@ class GraphDataModule(LightningDataModule):
|
||||
remove_boundary_edges: bool = False,
|
||||
build_radial_graph: bool = False,
|
||||
radius: float = None,
|
||||
start_unrolling_steps: int = 1,
|
||||
unrolling_steps: int = 1,
|
||||
):
|
||||
super().__init__()
|
||||
self.hf_repo = hf_repo
|
||||
self.split_name = split_name
|
||||
self.n_elements = n_elements
|
||||
self.dataset_dict = {}
|
||||
self.train_dataset, self.val_dataset, self.test_dataset = (
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
)
|
||||
self.unrolling_steps = start_unrolling_steps
|
||||
self.unrolling_steps = unrolling_steps
|
||||
self.geometry_dict = {}
|
||||
self.train_size = train_size
|
||||
self.val_size = val_size
|
||||
@@ -76,6 +46,9 @@ class GraphDataModule(LightningDataModule):
|
||||
def prepare_data(self):
|
||||
dataset = load_dataset(self.hf_repo, name="snapshots")[self.split_name]
|
||||
geometry = load_dataset(self.hf_repo, name="geometry")[self.split_name]
|
||||
if self.n_elements is not None:
|
||||
dataset = dataset.select(range(self.n_elements))
|
||||
geometry = geometry.select(range(self.n_elements))
|
||||
|
||||
total_len = len(dataset)
|
||||
train_len = int(self.train_size * total_len)
|
||||
@@ -117,13 +90,18 @@ class GraphDataModule(LightningDataModule):
|
||||
self,
|
||||
snapshot: dict,
|
||||
geometry: dict,
|
||||
test: bool = False,
|
||||
) -> Data:
|
||||
conductivity = torch.tensor(
|
||||
geometry["conductivity"], dtype=torch.float32
|
||||
)
|
||||
temperatures = torch.tensor(
|
||||
snapshot["temperatures"], dtype=torch.float32
|
||||
)[:40]
|
||||
temperatures = (
|
||||
torch.tensor(snapshot["temperatures"], dtype=torch.float32)[:40]
|
||||
if not test
|
||||
else torch.tensor(snapshot["temperatures"], dtype=torch.float32)[
|
||||
: self.unrolling_steps + 1
|
||||
]
|
||||
)
|
||||
times = torch.tensor(snapshot["times"], dtype=torch.float32)
|
||||
|
||||
pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2]
|
||||
@@ -138,16 +116,6 @@ class GraphDataModule(LightningDataModule):
|
||||
)
|
||||
|
||||
if self.build_radial_graph:
|
||||
# from pina.graph import RadiusGraph
|
||||
|
||||
# if self.radius is None:
|
||||
# raise ValueError("Radius must be specified for radial graph.")
|
||||
# edge_index = RadiusGraph.compute_radius_graph(
|
||||
# pos, radius=self.radius
|
||||
# )
|
||||
# from torch_geometric.utils import remove_self_loops
|
||||
|
||||
# edge_index, _ = remove_self_loops(edge_index)
|
||||
raise NotImplementedError(
|
||||
"Radial graph building not implemented yet."
|
||||
)
|
||||
@@ -161,7 +129,6 @@ class GraphDataModule(LightningDataModule):
|
||||
bottom_ids, right_ids, top_ids, left_ids, temperatures[0, :]
|
||||
)
|
||||
edge_attr = torch.norm(pos[edge_index[0]] - pos[edge_index[1]], dim=1)
|
||||
nodal_area = compute_nodal_area(edge_index, edge_attr, pos.size(0))
|
||||
if self.remove_boundary_edges:
|
||||
boundary_idx = torch.unique(boundary_mask)
|
||||
edge_index_mask = ~torch.isin(edge_index[1], boundary_idx)
|
||||
@@ -186,7 +153,6 @@ class GraphDataModule(LightningDataModule):
|
||||
edge_attr=edge_attr,
|
||||
boundary_mask=boundary_mask,
|
||||
boundary_values=boundary_values,
|
||||
nodal_area=nodal_area,
|
||||
)
|
||||
)
|
||||
return data
|
||||
@@ -213,7 +179,7 @@ class GraphDataModule(LightningDataModule):
|
||||
]
|
||||
if stage == "test" or stage is None:
|
||||
self.test_data = [
|
||||
self._build_dataset(snap, geom)
|
||||
self._build_dataset(snap, geom, test=True)
|
||||
for snap, geom in tqdm(
|
||||
zip(self.dataset_dict["test"], self.geometry_dict["test"]),
|
||||
desc="Building test graphs",
|
||||
@@ -234,7 +200,9 @@ class GraphDataModule(LightningDataModule):
|
||||
# self.train_dataset = ds
|
||||
# print(type(self.train_data[0]))
|
||||
ds = [i for data in self.train_data for i in data]
|
||||
# print(type(ds[0]))
|
||||
print(
|
||||
f"\nLoading training data, using {self.unrolling_steps} unrolling steps..."
|
||||
)
|
||||
return DataLoader(
|
||||
ds,
|
||||
batch_size=self.batch_size,
|
||||
@@ -244,6 +212,9 @@ class GraphDataModule(LightningDataModule):
|
||||
)
|
||||
|
||||
def val_dataloader(self):
|
||||
print(
|
||||
f"\nLoading validation data, using {self.unrolling_steps} unrolling steps..."
|
||||
)
|
||||
ds = [i for data in self.val_data for i in data]
|
||||
return DataLoader(
|
||||
ds,
|
||||
@@ -254,12 +225,10 @@ class GraphDataModule(LightningDataModule):
|
||||
)
|
||||
|
||||
def test_dataloader(self):
|
||||
ds = self.create_autoregressive_datasets(
|
||||
dataset="test", no_unrolling=True
|
||||
)
|
||||
ds = [i for data in self.test_data for i in data]
|
||||
return DataLoader(
|
||||
ds,
|
||||
batch_size=self.batch_size,
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
num_workers=8,
|
||||
pin_memory=True,
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch_geometric.nn import MessagePassing
|
||||
from torch.nn.utils import spectral_norm
|
||||
|
||||
|
||||
class DiffusionLayer(MessagePassing):
|
||||
@@ -13,28 +14,34 @@ class DiffusionLayer(MessagePassing):
|
||||
channels: int,
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
super().__init__(aggr="add", **kwargs)
|
||||
|
||||
self.dt = nn.Parameter(torch.tensor(1e-4))
|
||||
self.conductivity_net = nn.Sequential(
|
||||
nn.Linear(channels, channels, bias=False),
|
||||
spectral_norm(nn.Linear(channels, channels, bias=False)),
|
||||
nn.GELU(),
|
||||
nn.Linear(channels, channels, bias=False),
|
||||
spectral_norm(nn.Linear(channels, channels, bias=False)),
|
||||
)
|
||||
|
||||
self.phys_encoder = nn.Sequential(
|
||||
nn.Linear(1, 8, bias=False),
|
||||
spectral_norm(nn.Linear(1, 8, bias=True)),
|
||||
nn.Tanh(),
|
||||
nn.Linear(8, 1, bias=False),
|
||||
spectral_norm(nn.Linear(8, 1, bias=True)),
|
||||
nn.Softplus(),
|
||||
)
|
||||
|
||||
self.alpha_param = nn.Parameter(torch.tensor(1e-2))
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
return torch.clamp(self.alpha_param, min=1e-5, max=1.0)
|
||||
|
||||
def forward(self, x, edge_index, edge_weight, conductivity):
|
||||
edge_weight = edge_weight.unsqueeze(-1)
|
||||
conductance = self.phys_encoder(edge_weight)
|
||||
net_flux = self.propagate(edge_index, x=x, conductance=conductance)
|
||||
return x + ((net_flux) * self.dt)
|
||||
# return (1-self.alpha) * x + self.alpha * net_flux
|
||||
# return net_flux + x
|
||||
return x + self.alpha * net_flux
|
||||
|
||||
def message(self, x_i, x_j, conductance):
|
||||
delta = x_j - x_i
|
||||
@@ -44,15 +51,21 @@ class DiffusionLayer(MessagePassing):
|
||||
|
||||
|
||||
class DiffusionNet(nn.Module):
|
||||
def __init__(self, input_dim=1, output_dim=1, hidden_dim=8, n_layers=4):
|
||||
def __init__(
|
||||
self,
|
||||
input_dim=1,
|
||||
output_dim=1,
|
||||
hidden_dim=8,
|
||||
n_layers=4,
|
||||
shared_weights=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# Encoder: Projects input temperature to hidden feature space
|
||||
self.enc = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim, bias=True),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_dim, hidden_dim, bias=True),
|
||||
spectral_norm(nn.Linear(input_dim, hidden_dim, bias=True)),
|
||||
nn.GELU(),
|
||||
spectral_norm(nn.Linear(hidden_dim, hidden_dim, bias=True)),
|
||||
)
|
||||
|
||||
self.scale_x = nn.Parameter(torch.zeros(hidden_dim))
|
||||
@@ -60,27 +73,40 @@ class DiffusionNet(nn.Module):
|
||||
# Scale parameters for conditioning
|
||||
self.scale_edge_attr = nn.Parameter(torch.zeros(1))
|
||||
|
||||
# Stack of Diffusion Layers
|
||||
self.layers = torch.nn.ModuleList(
|
||||
[DiffusionLayer(hidden_dim) for _ in range(n_layers)]
|
||||
)
|
||||
# If shared_weights is True, use the same DiffusionLayer multiple times
|
||||
if shared_weights:
|
||||
diffusion_layer = DiffusionLayer(hidden_dim)
|
||||
self.layers = torch.nn.ModuleList(
|
||||
[diffusion_layer for _ in range(n_layers)]
|
||||
)
|
||||
# If shared_weights is False, use separate DiffusionLayers
|
||||
else:
|
||||
# Stack of Diffusion Layers
|
||||
self.layers = torch.nn.ModuleList(
|
||||
[DiffusionLayer(hidden_dim) for _ in range(n_layers)]
|
||||
)
|
||||
|
||||
# Decoder: Projects hidden features back to Temperature space
|
||||
self.dec = nn.Sequential(
|
||||
nn.Linear(hidden_dim, hidden_dim, bias=True),
|
||||
spectral_norm(nn.Linear(hidden_dim, hidden_dim, bias=True)),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_dim, output_dim, bias=True),
|
||||
spectral_norm(nn.Linear(hidden_dim, output_dim, bias=True)),
|
||||
nn.Softplus(), # Ensure positive temperature output
|
||||
)
|
||||
|
||||
self.func = torch.nn.GELU()
|
||||
|
||||
self.dt_param = nn.Parameter(torch.tensor(1e-2))
|
||||
|
||||
@property
|
||||
def dt(self):
|
||||
return torch.clamp(self.dt_param, min=1e-5, max=0.5)
|
||||
|
||||
def forward(self, x, edge_index, edge_attr, conductivity):
|
||||
# 1. Global Residual Connection setup
|
||||
# We save the input to add it back at the very end.
|
||||
# The network learns the correction (Delta T), not the absolute T.
|
||||
x_input = x
|
||||
|
||||
# 2. Encode
|
||||
h = self.enc(x) * torch.exp(self.scale_x)
|
||||
|
||||
@@ -98,5 +124,4 @@ class DiffusionNet(nn.Module):
|
||||
|
||||
# 6. Final Update (Explicit Euler Step)
|
||||
# T_new = T_old + Correction
|
||||
# return x_input + delta_x
|
||||
return delta_x
|
||||
return delta_x + x_input * self.dt
|
||||
|
||||
104
ThermalSolver/switch_dataloader_callback.py
Normal file
104
ThermalSolver/switch_dataloader_callback.py
Normal file
@@ -0,0 +1,104 @@
|
||||
import torch
|
||||
from lightning.pytorch.callbacks import Callback
|
||||
import os
|
||||
|
||||
|
||||
class SwitchDataLoaderCallback(Callback):
|
||||
def __init__(
|
||||
self,
|
||||
ckpt_path,
|
||||
increase_unrolling_steps_by,
|
||||
increase_unrolling_steps_every,
|
||||
max_unrolling_steps=10,
|
||||
patience=None,
|
||||
last_patience=None,
|
||||
metric="val/loss",
|
||||
):
|
||||
super().__init__()
|
||||
self.ckpt_path = ckpt_path
|
||||
if os.path.exists(ckpt_path) is False:
|
||||
os.makedirs(ckpt_path)
|
||||
self.increase_unrolling_steps_by = increase_unrolling_steps_by
|
||||
self.increase_unrolling_steps_every = increase_unrolling_steps_every
|
||||
self.max_unrolling_steps = max_unrolling_steps
|
||||
self.metric = metric
|
||||
self.actual_loss = torch.inf
|
||||
if patience is not None:
|
||||
self.patience = patience
|
||||
if last_patience is not None:
|
||||
self.last_patience = last_patience
|
||||
self.no_improvement_epochs = 0
|
||||
self.last_step_reached = False
|
||||
|
||||
def on_validation_epoch_end(self, trainer, pl_module):
|
||||
self._metric_tracker(trainer, pl_module)
|
||||
if self.last_step_reached is False:
|
||||
self._unrolling_steps_handler(pl_module, trainer)
|
||||
else:
|
||||
if self.no_improvement_epochs >= self.last_patience:
|
||||
trainer.should_stop = True
|
||||
|
||||
def _metric_tracker(self, trainer, pl_module):
|
||||
if trainer.callback_metrics.get(self.metric) < self.actual_loss:
|
||||
self.actual_loss = trainer.callback_metrics.get(self.metric)
|
||||
self._save_model(pl_module, trainer)
|
||||
self.no_improvement_epochs = 0
|
||||
print(f"\nNew best {self.metric}: {self.actual_loss:.4f}")
|
||||
else:
|
||||
self.no_improvement_epochs += 1
|
||||
print(
|
||||
f"\nNo improvement in {self.metric} for {self.no_improvement_epochs} epochs."
|
||||
)
|
||||
|
||||
def _should_reload_dataloader(self, trainer):
|
||||
if self.patience is not None:
|
||||
print(
|
||||
f"Checking patience: {self.no_improvement_epochs} / {self.patience}"
|
||||
)
|
||||
if self.no_improvement_epochs >= self.patience:
|
||||
return True
|
||||
elif (
|
||||
trainer.current_epoch + 1 % self.increase_unrolling_steps_every == 0
|
||||
):
|
||||
print("Reached scheduled epoch for increasing unrolling steps.")
|
||||
return True
|
||||
return False
|
||||
|
||||
def _unrolling_steps_handler(self, pl_module, trainer):
|
||||
if self._should_reload_dataloader(trainer):
|
||||
self._load_model(pl_module)
|
||||
if pl_module.unrolling_steps >= self.max_unrolling_steps:
|
||||
return
|
||||
pl_module.unrolling_steps += self.increase_unrolling_steps_by
|
||||
trainer.datamodule.unrolling_steps = pl_module.unrolling_steps
|
||||
print(f"Incremented unrolling steps to {pl_module.unrolling_steps}")
|
||||
trainer.datamodule.setup(stage="fit")
|
||||
trainer.manual_dataloader_reload()
|
||||
self.actual_loss = torch.inf
|
||||
if pl_module.unrolling_steps >= self.max_unrolling_steps:
|
||||
print(
|
||||
"Reached max unrolling steps. Stopping further increments."
|
||||
)
|
||||
self.last_step_reached = True
|
||||
|
||||
def _save_model(self, pl_module, trainer):
|
||||
pt_path = os.path.join(
|
||||
self.ckpt_path,
|
||||
f"{pl_module.unrolling_steps}_unrolling_best_model.pt",
|
||||
)
|
||||
torch.save(pl_module.state_dict(), pt_path) # <--- CHANGED THIS
|
||||
ckpt_path = os.path.join(
|
||||
self.ckpt_path,
|
||||
f"{pl_module.unrolling_steps}_unrolling_best_checkpoint.ckpt",
|
||||
)
|
||||
trainer.save_checkpoint(ckpt_path, weights_only=False)
|
||||
|
||||
def _load_model(self, pl_module):
|
||||
pt_path = os.path.join(
|
||||
self.ckpt_path,
|
||||
f"{pl_module.unrolling_steps}_unrolling_best_model.pt",
|
||||
)
|
||||
pl_module.load_state_dict(torch.load(pt_path, weights_only=True))
|
||||
print(
|
||||
f"Loaded model weights from {pt_path} for unrolling steps = {pl_module.unrolling_steps}"
|
||||
)
|
||||
@@ -10,8 +10,8 @@ trainer:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady"
|
||||
name: "16_refined"
|
||||
project: "thermal-conduction-unsteady-5.steps"
|
||||
name: "16_layer_16_hidden"
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
@@ -24,16 +24,24 @@ trainer:
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 10
|
||||
patience: 30
|
||||
verbose: false
|
||||
# - class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
|
||||
# init_args:
|
||||
# increase_unrolling_steps_by: 5
|
||||
# patience: 10
|
||||
# last_patience: 15
|
||||
# max_unrolling_steps: 20
|
||||
# ckpt_path: logs.autoregressive.wandb/16_16_refined/checkpoints
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
accumulate_grad_batches: 4
|
||||
log_every_n_steps: 0
|
||||
accumulate_grad_batches: 1
|
||||
default_root_dir: null
|
||||
gradient_clip_val: 1.0
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
@@ -50,13 +58,14 @@ data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "100_samples_easy_refined"
|
||||
batch_size: 8
|
||||
split_name: "easy.refined"
|
||||
n_elements: 100
|
||||
batch_size: 32
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
start_unrolling_steps: 5
|
||||
unrolling_steps: 5
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
@@ -10,12 +10,12 @@ trainer:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady"
|
||||
name: "standard"
|
||||
project: "thermal-conduction-unsteady-5.steps"
|
||||
name: "32_layer_16_hidden"
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
dirpath: logs.autoregressive.wandb/standard/checkpoints
|
||||
dirpath: logs.autoregressive.wandb/32_refined/checkpoints
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
@@ -24,16 +24,24 @@ trainer:
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 10
|
||||
patience: 30
|
||||
verbose: false
|
||||
# - class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
|
||||
# init_args:
|
||||
# increase_unrolling_steps_by: 5
|
||||
# patience: 10
|
||||
# last_patience: 15
|
||||
# max_unrolling_steps: 20
|
||||
# ckpt_path: logs.autoregressive.wandb/16_16_refined/checkpoints
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
log_every_n_steps: 0
|
||||
accumulate_grad_batches: 2
|
||||
default_root_dir: null
|
||||
gradient_clip_val: 1.0
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
@@ -43,20 +51,21 @@ model:
|
||||
input_dim: 1
|
||||
hidden_dim: 16
|
||||
output_dim: 1
|
||||
n_layers: 8
|
||||
n_layers: 32
|
||||
unrolling_steps: 5
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "100_samples_easy"
|
||||
split_name: "easy.refined"
|
||||
n_elements: 100
|
||||
batch_size: 16
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
start_unrolling_steps: 5
|
||||
unrolling_steps: 5
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
@@ -10,12 +10,12 @@ trainer:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady"
|
||||
name: "refined"
|
||||
project: "thermal-conduction-unsteady-5.steps"
|
||||
name: "8_layer_16_hidden"
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
dirpath: logs.autoregressive.wandb/refined/checkpoints
|
||||
dirpath: logs.autoregressive.wandb/8_refined/checkpoints
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
@@ -24,7 +24,7 @@ trainer:
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 10
|
||||
patience: 20
|
||||
verbose: false
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
@@ -32,7 +32,7 @@ trainer:
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
accumulate_grad_batches: 2
|
||||
accumulate_grad_batches: 1
|
||||
default_root_dir: null
|
||||
|
||||
model:
|
||||
@@ -50,13 +50,14 @@ data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "100_samples_easy_refined"
|
||||
batch_size: 16
|
||||
split_name: "easy.refined"
|
||||
n_elements: 100
|
||||
batch_size: 32
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
start_unrolling_steps: 5
|
||||
unrolling_steps: 5
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
@@ -1,62 +0,0 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady"
|
||||
name: "16_8_refined"
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
dirpath: logs.autoregressive.wandb/16_8_refined/checkpoints
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
filename: best-checkpoint
|
||||
- class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 10
|
||||
verbose: false
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
accumulate_grad_batches: 2
|
||||
default_root_dir: null
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
||||
model_init_args:
|
||||
input_dim: 1
|
||||
hidden_dim: 8
|
||||
output_dim: 1
|
||||
n_layers: 16
|
||||
unrolling_steps: 5
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "100_samples_easy_refined"
|
||||
batch_size: 16
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
start_unrolling_steps: 5
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
@@ -1,64 +0,0 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb/wandb
|
||||
project: "thermal-conduction-unsteady"
|
||||
name: "5_step_4_layers_16_hidden"
|
||||
# retain: true
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
dirpath: logs.autoregressive.wandb/5_step_4_layers_16_hidden/checkpoints
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
filename: best-checkpoint
|
||||
- class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 10
|
||||
verbose: false
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
accumulate_grad_batches: 2
|
||||
default_root_dir: null
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
||||
model_init_args:
|
||||
input_dim: 1
|
||||
hidden_dim: 16
|
||||
output_dim: 1
|
||||
n_layers: 4
|
||||
unrolling_steps: 5
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "100_samples_easy_refined"
|
||||
batch_size: 32
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: true
|
||||
radius: 0.5
|
||||
remove_boundary_edges: true
|
||||
start_unrolling_steps: 5
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
@@ -1,62 +0,0 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady"
|
||||
name: "5_step_4_layers_8_hidden"
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
dirpath: logs.autoregressive.wandb/5_step_4_layers_8_hidden_0.7_radius/checkpoints
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
filename: best-checkpoint
|
||||
- class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 10
|
||||
verbose: false
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
accumulate_grad_batches: 1
|
||||
default_root_dir: null
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
||||
model_init_args:
|
||||
input_dim: 1
|
||||
hidden_dim: 8
|
||||
output_dim: 1
|
||||
n_layers: 4
|
||||
unrolling_steps: 5
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "100_samples_easy_refined"
|
||||
batch_size: 32
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
start_unrolling_steps: 5
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
@@ -1,62 +0,0 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady"
|
||||
name: "standard"
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
dirpath: logs.autoregressive.wandb/standard/checkpoints
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
filename: best-checkpoint
|
||||
- class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 10
|
||||
verbose: false
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
accumulate_grad_batches: 1
|
||||
default_root_dir: null
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
||||
model_init_args:
|
||||
input_dim: 1
|
||||
hidden_dim: 8
|
||||
output_dim: 1
|
||||
n_layers: 8
|
||||
unrolling_steps: 5
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "100_samples_easy_refined"
|
||||
batch_size: 32
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
start_unrolling_steps: 5
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
6
run.py
6
run.py
@@ -5,7 +5,11 @@ torch.set_float32_matmul_precision("medium")
|
||||
|
||||
|
||||
def main():
|
||||
LightningCLI(subclass_mode_data=True, subclass_mode_model=True)
|
||||
LightningCLI(
|
||||
subclass_mode_data=True,
|
||||
subclass_mode_model=True,
|
||||
save_config_kwargs={"overwrite": True},
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
11
submit.sh
11
submit.sh
@@ -1,8 +1,5 @@
|
||||
#!/bin/bash
|
||||
# python run.py fit --config experiments/config_4_layer_8_hidden.yaml
|
||||
# python run.py fit --config experiments/config_8_layer_8_hidden.yaml
|
||||
python run.py fit --config experiments/config_8_layer_16_hidden_refined.yaml
|
||||
python run.py fit --config experiments/config_16_layer_8_hidden_refined.yaml
|
||||
python run.py fit --config experiments/config_16_layer_16_hidden_refined.yaml
|
||||
python run.py fit --config experiments/config_8_layer_16_hidden.yaml
|
||||
# python run.py fit --config experiments/config_4_layer_16_hidden.yaml
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
python run.py fit --config experiments/5_steps/config_16_layer_16_hidden_refined.yaml
|
||||
python run.py fit --config experiments/5_steps/config_32_layer_16_hidden_refined.yaml
|
||||
python run.py fit --config experiments/5_steps/config_8_layer_16_hidden_refined.yaml
|
||||
|
||||
Reference in New Issue
Block a user