Compare commits

..

6 Commits

Author SHA1 Message Date
92104a6b06 new plotting strategy 2025-12-19 15:50:47 +01:00
68a7def5e6 add LogPhysEncoder 2025-12-19 15:50:26 +01:00
db50f5ed69 add experiments 2025-12-18 09:30:37 +01:00
0a034225ef not bad this setup 2025-12-18 09:30:21 +01:00
Filippo Olivo
4fdf817d75 add experiments for 10 unrolling steps 2025-12-15 09:15:29 +01:00
Filippo Olivo
a9d56a3ed9 fix model and datamodule 2025-12-15 09:08:21 +01:00
13 changed files with 830 additions and 86 deletions

View File

@@ -15,7 +15,7 @@ def import_class(class_path: str):
return cls return cls
def _plot_mesh(pos_, y_, y_pred_, y_true_, batch, i, batch_idx): def _plot_mesh(pos_, y_, y_pred_, y_true_, batch, cells, i, batch_idx):
# print(pos_.shape, y_.shape, y_pred_.shape, y_true_.shape) # print(pos_.shape, y_.shape, y_pred_.shape, y_true_.shape)
for j in [0]: for j in [0]:
idx = (batch == j).nonzero(as_tuple=True)[0] idx = (batch == j).nonzero(as_tuple=True)[0]
@@ -25,11 +25,12 @@ def _plot_mesh(pos_, y_, y_pred_, y_true_, batch, i, batch_idx):
# print(pos.shape, y.shape, y_pred.shape) # print(pos.shape, y.shape, y_pred.shape)
y_true = y_true_[idx].detach().cpu() y_true = y_true_[idx].detach().cpu()
y_true = torch.clamp(y_true, min=0) y_true = torch.clamp(y_true, min=0)
folder = f"{j:02d}_images" folder = f"{batch_idx:02d}_images"
if os.path.exists(folder) is False: if os.path.exists(folder) is False:
os.makedirs(folder) os.makedirs(folder)
tria = Triangulation(pos[:, 0], pos[:, 1]) triangles = torch.vstack([cells[:, [0, 1, 2]], cells[:, [0, 2, 3]]])
plt.figure(figsize=(18, 6)) tria = Triangulation(pos[:, 0], pos[:, 1], triangles=triangles)
plt.figure(figsize=(24, 6))
# plt.subplot(1, 4, 1) # plt.subplot(1, 4, 1)
# plt.tricontourf(tria, y.squeeze().numpy(), levels=100) # plt.tricontourf(tria, y.squeeze().numpy(), levels=100)
# plt.colorbar() # plt.colorbar()
@@ -37,61 +38,79 @@ def _plot_mesh(pos_, y_, y_pred_, y_true_, batch, i, batch_idx):
# plt.tripcolor(tria, y_pred.squeeze().numpy() # plt.tripcolor(tria, y_pred.squeeze().numpy()
# plt.savefig("test_scatter_step_before.png", dpi=72) # plt.savefig("test_scatter_step_before.png", dpi=72)
# x = z # x = z
plt.subplot(1, 3, 1) plt.subplot(1, 4, 1)
# plt.tricontourf(tria, y_pred.squeeze().numpy(), levels=100) plt.tricontourf(tria, y_pred.squeeze().numpy(), levels=100)
plt.scatter( # plt.scatter(pos[:, 0], pos[:, 1], c=y_pred.squeeze().numpy(), s=20, cmap="viridis",)
pos[:, 0],
pos[:, 1],
c=y_pred.squeeze().numpy(),
s=20,
cmap="viridis",
)
plt.colorbar() plt.colorbar()
plt.title("Step t Predicted") plt.title(f"Prediction at timestep {i:03d}")
plt.subplot(1, 3, 2) plt.subplot(1, 4, 2)
# plt.tricontourf(tria, y_true.squeeze().numpy(), levels=100) plt.tricontourf(tria, y_true.squeeze().numpy(), levels=100)
plt.scatter( # plt.scatter(pos[:, 0], pos[:, 1], c=y_true.squeeze().numpy(), s=20, cmap="viridis")
pos[:, 0],
pos[:, 1],
c=y_true.squeeze().numpy(),
s=20,
cmap="viridis",
)
plt.colorbar() plt.colorbar()
plt.title("t True") plt.title("Ground Truth Steady State")
plt.subplot(1, 3, 3) plt.subplot(1, 4, 3)
per_element_relative_error = torch.abs(y_pred - y_true) / torch.clamp( per_element_relative_error = torch.abs(y_pred - y_true) / (
torch.abs(y_true), min=1e-6 y_true + 1e-6
) )
# plt.tricontourf(tria, per_element_relative_error.squeeze(), levels=100) per_element_relative_error = torch.clamp(
plt.scatter( per_element_relative_error, max=1.0, min=0.0
pos[:, 0],
pos[:, 1],
c=per_element_relative_error.squeeze().numpy(),
s=20,
cmap="viridis",
) )
plt.tricontourf(
tria,
per_element_relative_error.squeeze(),
levels=100,
vmin=0,
vmax=1.0,
)
# plt.scatter(pos[:, 0], pos[:, 1], c=per_element_relative_error.squeeze().numpy(), s=20, cmap="viridis", vmin=0, vmax=1.0)
plt.colorbar() plt.colorbar()
plt.title("Relative Error") plt.title("Relative Error")
plt.subplot(1, 4, 4)
absolute_error = torch.abs(y_pred - y_true)
plt.tricontourf(tria, absolute_error.squeeze(), levels=100)
# plt.scatter(pos[:, 0], pos[:, 1], c=absolute_error.squeeze().numpy(), s=20, cmap="viridis")
plt.colorbar()
plt.title("Absolute Error")
plt.suptitle("GNO", fontsize=16) plt.suptitle("GNO", fontsize=16)
name = f"{folder}/{j:04d}_graph_iter_{i:04d}.png" name = f"{folder}/{j:04d}_graph_iter_{i:04d}.png"
plt.savefig(name, dpi=72) plt.savefig(name, dpi=72)
plt.close() plt.close()
def _plot_losses(test_losses, batch_idx): def _plot_losses(relative_errors, test_losses, relative_update, batch_idx):
folder = f"{batch_idx:02d}_images" # folder = f"{batch_idx:02d}_images"
plt.figure() plt.figure(figsize=(18, 6))
plt.subplot(1, 3, 1)
for i, losses in enumerate(test_losses): for i, losses in enumerate(test_losses):
plt.plot(losses) plt.plot(losses)
if i == 3: if i == 3:
break break
plt.yscale("log") plt.yscale("log")
plt.xlabel("Iteration") plt.xlabel("Iteration")
plt.ylabel("Relative Error") plt.ylabel("Test Loss")
plt.title("Test Loss over Iterations") plt.title("Test Loss over Iterations")
plt.grid(True) plt.grid(True)
file_name = f"{folder}/test_loss.png" plt.subplot(1, 3, 2)
for i, losses in enumerate(relative_errors):
plt.plot(losses)
if i == 3:
break
plt.yscale("log")
plt.xlabel("Iteration")
plt.ylabel("Relative Error")
plt.title("Relative error over Iterations")
plt.grid(True)
plt.subplot(1, 3, 3)
for i, updates in enumerate(relative_update):
plt.plot(updates)
if i == 3:
break
plt.yscale("log")
plt.xlabel("Iteration")
plt.ylabel("Relative Update")
plt.title("Relative update over Iterations")
plt.grid(True)
file_name = f"test_errors.png"
plt.savefig(file_name, dpi=300) plt.savefig(file_name, dpi=300)
plt.close() plt.close()
@@ -112,6 +131,8 @@ class GraphSolver(LightningModule):
self.loss = loss if loss is not None else torch.nn.MSELoss() self.loss = loss if loss is not None else torch.nn.MSELoss()
self.unrolling_steps = unrolling_steps self.unrolling_steps = unrolling_steps
self.test_losses = [] self.test_losses = []
self.test_relative_errors = []
self.test_relative_updates = []
def _compute_loss(self, x, y): def _compute_loss(self, x, y):
return self.loss(x, y) return self.loss(x, y)
@@ -166,6 +187,7 @@ class GraphSolver(LightningModule):
) )
losses = [] losses = []
for i in range(self.unrolling_steps): for i in range(self.unrolling_steps):
# print(f"Training step {i+1}/{self.unrolling_steps}")
out = self._compute_model_steps( out = self._compute_model_steps(
x, x,
edge_index, edge_index,
@@ -216,20 +238,20 @@ class GraphSolver(LightningModule):
batch.boundary_values, batch.boundary_values,
conductivity, conductivity,
) )
if ( # if (
batch_idx == 0 # batch_idx == 0
and self.current_epoch % 10 == 0 # and self.current_epoch % 10 == 0
and self.current_epoch > 0 # and self.current_epoch > 0
): # ):
_plot_mesh( # _plot_mesh(
batch.pos, # batch.pos,
x, # x,
out, # out,
y[:, i, :], # y[:, i, :],
batch.batch, # batch.batch,
i, # i,
self.current_epoch, # self.current_epoch,
) # )
x = out x = out
losses.append(self.loss(out, y[:, i, :])) losses.append(self.loss(out, y[:, i, :]))
@@ -237,11 +259,11 @@ class GraphSolver(LightningModule):
self._log_loss(loss, batch, "val") self._log_loss(loss, batch, "val")
return loss return loss
def _check_convergence(self, y_new, y_old, tol=1e-3): def _check_convergence(self, y_new, y_old, tol=1e-4):
l2_norm = torch.norm(y_new, p=2) - torch.norm(y_old, p=2) l2_norm = torch.norm(y_new - y_old, p=2)
y_old_norm = torch.norm(y_old, p=2) y_old_norm = torch.norm(y_old, p=2)
rel_error = l2_norm / (y_old_norm) rel_error = l2_norm / (y_old_norm)
return rel_error.item() < tol return rel_error.item() < tol, rel_error.item()
def test_step(self, batch: Batch, batch_idx): def test_step(self, batch: Batch, batch_idx):
x, y, edge_index, edge_attr, conductivity = self._preprocess_batch( x, y, edge_index, edge_attr, conductivity = self._preprocess_batch(
@@ -251,9 +273,14 @@ class GraphSolver(LightningModule):
losses = [] losses = []
all_losses = [] all_losses = []
norms = [] norms = []
s = []
relative_updates = []
sequence_length = y.size(1) sequence_length = y.size(1)
y = y[:, -1, :].unsqueeze(1) y = y[:, -1, :].unsqueeze(1)
for i in range(100): _plot_mesh(
batch.pos, x, x, y[:, -1, :], batch.batch, batch.cells, 0, batch_idx
)
for i in range(200):
out = self._compute_model_steps( out = self._compute_model_steps(
# torch.cat([x,pos], dim=-1), # torch.cat([x,pos], dim=-1),
x, x,
@@ -265,23 +292,27 @@ class GraphSolver(LightningModule):
conductivity, conductivity,
) )
norms.append(torch.norm(out - x, p=2).item()) norms.append(torch.norm(out - x, p=2).item())
converged = self._check_convergence(out, x) converged, relative_update = self._check_convergence(out, x)
if batch_idx == 0: relative_updates.append(relative_update)
if batch_idx <= 4:
print(f"Plotting iteration {i}, norm diff: {norms[-1]}")
_plot_mesh( _plot_mesh(
batch.pos, batch.pos,
x, x,
out, out,
y[:, -1, :], y[:, -1, :],
batch.batch, batch.batch,
i, batch.cells,
self.current_epoch, i + 1,
batch_idx,
) )
x = out x = out
loss = self.loss(out, y[:, -1, :]) loss = self.loss(out, y[:, -1, :])
relative_error = torch.norm(out - y[:, -1, :], p=2) / torch.norm( relative_error = torch.abs(out - y[:, -1, :]) / (
y[:, -1, :], p=2 torch.abs(y[:, -1, :]) + 1e-6
) )
all_losses.append(relative_error.item()) mean_relative_error = relative_error.mean()
all_losses.append(mean_relative_error.item())
losses.append(loss) losses.append(loss)
if converged: if converged:
print( print(
@@ -289,13 +320,20 @@ class GraphSolver(LightningModule):
) )
break break
loss = torch.stack(losses).mean() loss = torch.stack(losses).mean()
self.test_losses.append(all_losses) self.test_losses.append(losses)
self.test_relative_errors.append(all_losses)
self.test_relative_updates.append(relative_updates)
self._log_loss(loss, batch, "test") self._log_loss(loss, batch, "test")
return loss return loss
def on_test_end(self): def on_test_end(self):
if len(self.test_losses) > 0: if len(self.test_losses) > 0:
_plot_losses(self.test_losses, batch_idx=0) _plot_losses(
self.test_relative_errors,
self.test_losses,
self.test_relative_updates,
batch_idx=0,
)
def configure_optimizers(self): def configure_optimizers(self):
optimizer = torch.optim.AdamW(self.parameters(), lr=1e-3) optimizer = torch.optim.AdamW(self.parameters(), lr=1e-3)

View File

@@ -82,7 +82,9 @@ class GraphDataModule(LightningDataModule):
conductivity = torch.tensor( conductivity = torch.tensor(
snapshot["conductivity"], dtype=torch.float32 snapshot["conductivity"], dtype=torch.float32
) )
temperature = torch.tensor(snapshot["temperature"], dtype=torch.float32) temperature = torch.tensor(
snapshot["temperature"], dtype=torch.float32
)[:50]
pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2] pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2]

View File

@@ -1,18 +1,19 @@
import torch import torch
from tqdm import tqdm from tqdm import tqdm
from lightning import LightningDataModule from lightning import LightningDataModule
from datasets import load_dataset from datasets import load_dataset, concatenate_datasets
from torch_geometric.data import Data from torch_geometric.data import Data
from torch_geometric.loader import DataLoader from torch_geometric.loader import DataLoader
from torch_geometric.utils import to_undirected from torch_geometric.utils import to_undirected
from .mesh_data import MeshData from .mesh_data import MeshData
from typing import List, Union
class GraphDataModule(LightningDataModule): class GraphDataModule(LightningDataModule):
def __init__( def __init__(
self, self,
hf_repo: str, hf_repo: str,
split_name: str, split_name: Union[str, List[str]],
n_elements: int = None, n_elements: int = None,
train_size: float = 0.2, train_size: float = 0.2,
val_size: float = 0.1, val_size: float = 0.1,
@@ -22,6 +23,8 @@ class GraphDataModule(LightningDataModule):
build_radial_graph: bool = False, build_radial_graph: bool = False,
radius: float = None, radius: float = None,
unrolling_steps: int = 1, unrolling_steps: int = 1,
aggregate_timesteps: int = 1,
min_normalized_diff: float = 1e-3,
): ):
super().__init__() super().__init__()
self.hf_repo = hf_repo self.hf_repo = hf_repo
@@ -34,6 +37,9 @@ class GraphDataModule(LightningDataModule):
None, None,
) )
self.unrolling_steps = unrolling_steps self.unrolling_steps = unrolling_steps
self.aggregate_timesteps = aggregate_timesteps
self.min_normalized_diff = min_normalized_diff
self.geometry_dict = {} self.geometry_dict = {}
self.train_size = train_size self.train_size = train_size
self.val_size = val_size self.val_size = val_size
@@ -44,8 +50,30 @@ class GraphDataModule(LightningDataModule):
self.radius = radius self.radius = radius
def prepare_data(self): def prepare_data(self):
dataset = load_dataset(self.hf_repo, name="snapshots")[self.split_name] if isinstance(self.split_name, list):
geometry = load_dataset(self.hf_repo, name="geometry")[self.split_name] dataset_list = []
geometry_list = []
for split in self.split_name:
dataset_list.append(
load_dataset(self.hf_repo, name="snapshots")[split]
)
geometry_list.append(
load_dataset(self.hf_repo, name="geometry")[split]
)
dataset = concatenate_datasets(dataset_list)
geometry = concatenate_datasets(geometry_list)
idx = torch.randperm(len(dataset))
dataset = dataset.select(idx.tolist())
geometry = geometry.select(idx.tolist())
else:
dataset = load_dataset(self.hf_repo, name="snapshots")[
self.split_name
]
geometry = load_dataset(self.hf_repo, name="geometry")[
self.split_name
]
if self.n_elements is not None: if self.n_elements is not None:
dataset = dataset.select(range(self.n_elements)) dataset = dataset.select(range(self.n_elements))
geometry = geometry.select(range(self.n_elements)) geometry = geometry.select(range(self.n_elements))
@@ -86,10 +114,16 @@ class GraphDataModule(LightningDataModule):
dim=0, dim=0,
) )
) )
print(temperatures.shape) if not test:
for t in range(1, temperatures.size(0)):
diff = temperatures[t, :] - temperatures[t - 1, :]
norm_diff = torch.norm(diff, p=2) / torch.norm(
temperatures[t - 1], p=2
)
if norm_diff < self.min_normalized_diff:
temperatures = temperatures[: t + 1, :]
break
pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2] pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2]
if self.build_radial_graph: if self.build_radial_graph:
raise NotImplementedError( raise NotImplementedError(
"Radial graph building not implemented yet." "Radial graph building not implemented yet."
@@ -103,9 +137,7 @@ class GraphDataModule(LightningDataModule):
boundary_mask = torch.tensor( boundary_mask = torch.tensor(
geometry["constraints_mask"], dtype=torch.int64 geometry["constraints_mask"], dtype=torch.int64
) )
boundary_values = torch.tensor( boundary_values = temperatures[0, boundary_mask]
geometry["constraints_values"], dtype=torch.float32
)
edge_attr = torch.norm(pos[edge_index[0]] - pos[edge_index[1]], dim=1) edge_attr = torch.norm(pos[edge_index[0]] - pos[edge_index[1]], dim=1)
if self.remove_boundary_edges: if self.remove_boundary_edges:
@@ -118,6 +150,9 @@ class GraphDataModule(LightningDataModule):
data = [] data = []
if test: if test:
cells = geometry.get("cells", None)
if cells is not None:
cells = torch.tensor(cells, dtype=torch.int64)
data.append( data.append(
MeshData( MeshData(
x=temperatures[0, :].unsqueeze(-1), x=temperatures[0, :].unsqueeze(-1),
@@ -128,6 +163,7 @@ class GraphDataModule(LightningDataModule):
edge_attr=edge_attr, edge_attr=edge_attr,
boundary_mask=boundary_mask, boundary_mask=boundary_mask,
boundary_values=boundary_values, boundary_values=boundary_values,
cells=cells,
) )
) )
return data return data
@@ -203,7 +239,7 @@ class GraphDataModule(LightningDataModule):
batch_size=self.batch_size, batch_size=self.batch_size,
shuffle=True, shuffle=True,
num_workers=8, num_workers=8,
pin_memory=True, pin_memory=False,
) )
def val_dataloader(self): def val_dataloader(self):
@@ -216,7 +252,7 @@ class GraphDataModule(LightningDataModule):
batch_size=128, batch_size=128,
shuffle=False, shuffle=False,
num_workers=8, num_workers=8,
pin_memory=True, pin_memory=False,
) )
def test_dataloader(self): def test_dataloader(self):
@@ -226,5 +262,5 @@ class GraphDataModule(LightningDataModule):
batch_size=1, batch_size=1,
shuffle=False, shuffle=False,
num_workers=8, num_workers=8,
pin_memory=True, pin_memory=False,
) )

View File

@@ -4,6 +4,27 @@ from torch_geometric.nn import MessagePassing
from torch.nn.utils import spectral_norm from torch.nn.utils import spectral_norm
class LogPhysEncoder(nn.Module):
"""
Processes 1/dx in log-space to handle multiple scales of geometry
(from micro-meshes to macro-meshes) without numerical instability.
"""
def __init__(self, hidden_dim):
super().__init__()
self.mlp = nn.Sequential(
spectral_norm(nn.Linear(1, hidden_dim)),
nn.GELU(),
spectral_norm(nn.Linear(hidden_dim, 1)),
nn.Softplus(), # Physical conductance must be positive
)
def forward(self, inv_dx):
# We use log(1/dx) to linearize the scale of different geometries
log_inv_dx = torch.log(inv_dx + 1e-9)
return self.mlp(log_inv_dx)
class DiffusionLayer(MessagePassing): class DiffusionLayer(MessagePassing):
""" """
Modella: T_new = T_old + dt * Divergenza(Flusso) Modella: T_new = T_old + dt * Divergenza(Flusso)
@@ -22,12 +43,7 @@ class DiffusionLayer(MessagePassing):
spectral_norm(nn.Linear(channels, channels, bias=False)), spectral_norm(nn.Linear(channels, channels, bias=False)),
) )
self.phys_encoder = nn.Sequential( self.phys_encoder = LogPhysEncoder(hidden_dim=channels)
spectral_norm(nn.Linear(1, 8, bias=True)),
nn.Tanh(),
spectral_norm(nn.Linear(8, 1, bias=True)),
nn.Softplus(),
)
self.alpha_param = nn.Parameter(torch.tensor(1e-2)) self.alpha_param = nn.Parameter(torch.tensor(1e-2))
@@ -123,3 +139,4 @@ class DiffusionNet(nn.Module):
# 6. Final Update (Explicit Euler Step) # 6. Final Update (Explicit Euler Step)
# T_new = T_old + Correction # T_new = T_old + Correction
return delta_x + x_input * self.dt return delta_x + x_input * self.dt
# return delta_x

View File

@@ -0,0 +1,72 @@
# lightning.pytorch==2.5.5
seed_everything: 1999
trainer:
accelerator: gpu
strategy: auto
devices: 1
num_nodes: 1
precision: null
logger:
- class_path: lightning.pytorch.loggers.WandbLogger
init_args:
save_dir: logs.autoregressive.wandb
project: "thermal-conduction-unsteady-10.steps"
name: "16_layer_16_hidden.adaptive_refined"
callbacks:
# - class_path: lightning.pytorch.callbacks.ModelCheckpoint
# init_args:
# dirpath: logs.autoregressive.wandb/16_refined.10_steps/checkpoints
# monitor: val/loss
# mode: min
# save_top_k: 1
# filename: best-checkpoint
# - class_path: lightning.pytorch.callbacks.EarlyStopping
# init_args:
# monitor: val/loss
# mode: min
# patience: 30
# verbose: false
- class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
init_args:
increase_unrolling_steps_by: 4
patience: 5
last_patience: 15
max_unrolling_steps: 10
ckpt_path: logs.autoregressive.wandb/10_steps/basic.adaptive_refined/16_layer_16_hidden/
max_epochs: 1000
min_epochs: null
max_steps: -1
min_steps: null
overfit_batches: 0.0
log_every_n_steps: 0
accumulate_grad_batches: 1
default_root_dir: null
gradient_clip_val: 1.0
model:
class_path: ThermalSolver.autoregressive_module.GraphSolver
init_args:
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
model_init_args:
input_dim: 1
hidden_dim: 16
output_dim: 1
n_layers: 16
unrolling_steps: 2
data:
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
split_name: "3_stripes.basic.1_adaptive_refined"
n_elements: 100
batch_size: 24
train_size: 0.7
val_size: 0.2
test_size: 0.1
build_radial_graph: false
remove_boundary_edges: true
unrolling_steps: 2
min_normalized_diff: 1e-4
optimizer: null
lr_scheduler: null

View File

@@ -0,0 +1,63 @@
# lightning.pytorch==2.5.5
seed_everything: 1999
trainer:
accelerator: gpu
strategy: auto
devices: 1
num_nodes: 1
precision: null
logger:
- class_path: lightning.pytorch.loggers.WandbLogger
init_args:
save_dir: logs.autoregressive.wandb
project: "thermal-conduction-unsteady-10.steps"
name: "16_layer_16_hidden.adaptive_refined.combined"
callbacks:
- class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
init_args:
increase_unrolling_steps_by: 4
patience: 5
last_patience: 10
max_unrolling_steps: 10
ckpt_path: logs.autoregressive.wandb/10_steps/basic.adaptive_refined.combined/16_layer_16_hidden/
max_epochs: 1000
min_epochs: null
max_steps: -1
min_steps: null
overfit_batches: 0.0
log_every_n_steps: 0
accumulate_grad_batches: 1
default_root_dir: null
gradient_clip_val: 1.0
model:
class_path: ThermalSolver.autoregressive_module.GraphSolver
init_args:
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
model_init_args:
input_dim: 1
hidden_dim: 16
output_dim: 1
n_layers: 16
unrolling_steps: 2
data:
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
split_name:
- "4_stripes.basic.1_adaptive_refined"
- "3_stripes.basic.1_adaptive_refined"
- "2_stripes.basic.1_adaptive_refined"
n_elements: 100
batch_size: 24
train_size: 0.7
val_size: 0.2
test_size: 0.1
build_radial_graph: false
remove_boundary_edges: true
unrolling_steps: 2
min_normalized_diff: 1e-4
optimizer: null
lr_scheduler: null

View File

@@ -0,0 +1,72 @@
# lightning.pytorch==2.5.5
seed_everything: 1999
trainer:
accelerator: gpu
strategy: auto
devices: 1
num_nodes: 1
precision: null
logger:
- class_path: lightning.pytorch.loggers.WandbLogger
init_args:
save_dir: logs.autoregressive.wandb
project: "thermal-conduction-unsteady-10.steps"
name: "16_layer_16_hidden.refined"
callbacks:
# - class_path: lightning.pytorch.callbacks.ModelCheckpoint
# init_args:
# dirpath: logs.autoregressive.wandb/16_refined.10_steps/checkpoints
# monitor: val/loss
# mode: min
# save_top_k: 1
# filename: best-checkpoint
# - class_path: lightning.pytorch.callbacks.EarlyStopping
# init_args:
# monitor: val/loss
# mode: min
# patience: 30
# verbose: false
- class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
init_args:
increase_unrolling_steps_by: 4
patience: 5
last_patience: 15
max_unrolling_steps: 10
ckpt_path: logs.autoregressive.wandb/10_steps/basic.refined/16_layer_16_hidden/
max_epochs: 1000
min_epochs: null
max_steps: -1
min_steps: null
overfit_batches: 0.0
log_every_n_steps: 0
accumulate_grad_batches: 1
default_root_dir: null
gradient_clip_val: 1.0
model:
class_path: ThermalSolver.autoregressive_module.GraphSolver
init_args:
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
model_init_args:
input_dim: 1
hidden_dim: 16
output_dim: 1
n_layers: 16
unrolling_steps: 2
data:
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
split_name: "3_stripes.basic.refined"
n_elements: 50
batch_size: 24
train_size: 0.7
val_size: 0.2
test_size: 0.1
build_radial_graph: false
remove_boundary_edges: true
unrolling_steps: 2
min_normalized_diff: 1e-4
optimizer: null
lr_scheduler: null

View File

@@ -0,0 +1,77 @@
# lightning.pytorch==2.5.5
seed_everything: 1999
trainer:
accelerator: gpu
strategy: auto
devices: 1
num_nodes: 1
precision: null
logger:
- class_path: lightning.pytorch.loggers.WandbLogger
init_args:
save_dir: logs.autoregressive.wandb
project: "thermal-conduction-unsteady-10.steps"
name: "16_layer_16_hidden.refined.combined"
callbacks:
# - class_path: lightning.pytorch.callbacks.ModelCheckpoint
# init_args:
# dirpath: logs.autoregressive.wandb/16_refined.10_steps/checkpoints
# monitor: val/loss
# mode: min
# save_top_k: 1
# filename: best-checkpoint
# - class_path: lightning.pytorch.callbacks.EarlyStopping
# init_args:
# monitor: val/loss
# mode: min
# patience: 30
# verbose: false
- class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
init_args:
increase_unrolling_steps_by: 4
patience: 5
last_patience: 10
max_unrolling_steps: 10
ckpt_path: logs.autoregressive.wandb/10_steps/basic.refined.combined/16_layer_16_hidden/
max_epochs: 1000
min_epochs: null
max_steps: -1
min_steps: null
overfit_batches: 0.0
log_every_n_steps: 0
accumulate_grad_batches: 1
default_root_dir: null
gradient_clip_val: 1.0
model:
class_path: ThermalSolver.autoregressive_module.GraphSolver
init_args:
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
model_init_args:
input_dim: 1
hidden_dim: 16
output_dim: 1
n_layers: 16
unrolling_steps: 10
data:
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
split_name:
- "4_stripes.basic.refined"
- "3_stripes.basic.refined"
- "2_stripes.basic.refined"
n_elements: 75
batch_size: 24
train_size: 0.7
val_size: 0.2
test_size: 0.1
build_radial_graph: false
remove_boundary_edges: true
unrolling_steps: 10
min_normalized_diff: 1e-4
optimizer: null
lr_scheduler: null
ckpt_path: logs.autoregressive.wandb/10_steps/basic.refined.combined/16_layer_16_hidden/6_unrolling_best_checkpoint.ckpt

View File

@@ -0,0 +1,72 @@
# lightning.pytorch==2.5.5
seed_everything: 1999
trainer:
accelerator: gpu
strategy: auto
devices: 1
num_nodes: 1
precision: null
logger:
- class_path: lightning.pytorch.loggers.WandbLogger
init_args:
save_dir: logs.autoregressive.wandb
project: "thermal-conduction-unsteady-10.steps"
name: "16_layer_16_hidden.refined.star"
callbacks:
# - class_path: lightning.pytorch.callbacks.ModelCheckpoint
# init_args:
# dirpath: logs.autoregressive.wandb/16_refined.10_steps/checkpoints
# monitor: val/loss
# mode: min
# save_top_k: 1
# filename: best-checkpoint
# - class_path: lightning.pytorch.callbacks.EarlyStopping
# init_args:
# monitor: val/loss
# mode: min
# patience: 30
# verbose: false
- class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
init_args:
increase_unrolling_steps_by: 4
patience: 5
last_patience: 15
max_unrolling_steps: 10
ckpt_path: logs.autoregressive.wandb/10_steps/basic.refined.star/16_layer_16_hidden/
max_epochs: 1000
min_epochs: null
max_steps: -1
min_steps: null
overfit_batches: 0.0
log_every_n_steps: 0
accumulate_grad_batches: 1
default_root_dir: null
gradient_clip_val: 1.0
model:
class_path: ThermalSolver.autoregressive_module.GraphSolver
init_args:
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
model_init_args:
input_dim: 1
hidden_dim: 16
output_dim: 1
n_layers: 16
unrolling_steps: 2
data:
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
split_name: "3_stripes.star"
n_elements: 100
batch_size: 24
train_size: 0.7
val_size: 0.2
test_size: 0.1
build_radial_graph: false
remove_boundary_edges: true
unrolling_steps: 2
min_normalized_diff: 1e-4
optimizer: null
lr_scheduler: null

View File

@@ -0,0 +1,72 @@
# lightning.pytorch==2.5.5
seed_everything: 1999
trainer:
accelerator: gpu
strategy: auto
devices: 1
num_nodes: 1
precision: null
logger:
- class_path: lightning.pytorch.loggers.WandbLogger
init_args:
save_dir: logs.autoregressive.wandb
project: "thermal-conduction-unsteady-10.steps"
name: "16_layer_16_hidden.star"
callbacks:
# - class_path: lightning.pytorch.callbacks.ModelCheckpoint
# init_args:
# dirpath: logs.autoregressive.wandb/16_refined.10_steps/checkpoints
# monitor: val/loss
# mode: min
# save_top_k: 1
# filename: best-checkpoint
# - class_path: lightning.pytorch.callbacks.EarlyStopping
# init_args:
# monitor: val/loss
# mode: min
# patience: 30
# verbose: false
- class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
init_args:
increase_unrolling_steps_by: 4
patience: 5
last_patience: 15
max_unrolling_steps: 10
ckpt_path: logs.autoregressive.wandb/10_steps/basic.star/16_layer_16_hidden/
max_epochs: 1000
min_epochs: null
max_steps: -1
min_steps: null
overfit_batches: 0.0
log_every_n_steps: 0
accumulate_grad_batches: 1
default_root_dir: null
gradient_clip_val: 1.0
model:
class_path: ThermalSolver.autoregressive_module.GraphSolver
init_args:
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
model_init_args:
input_dim: 1
hidden_dim: 16
output_dim: 1
n_layers: 16
unrolling_steps: 2
data:
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
split_name: "3_stripes.star.refined"
n_elements: 100
batch_size: 24
train_size: 0.7
val_size: 0.2
test_size: 0.1
build_radial_graph: false
remove_boundary_edges: true
unrolling_steps: 2
min_normalized_diff: 1e-4
optimizer: null
lr_scheduler: null

View File

@@ -0,0 +1,75 @@
# lightning.pytorch==2.5.5
seed_everything: 1999
trainer:
accelerator: gpu
strategy: auto
devices: 1
num_nodes: 1
precision: null
logger:
- class_path: lightning.pytorch.loggers.WandbLogger
init_args:
save_dir: logs.autoregressive.wandb
project: "thermal-conduction-unsteady-10.steps"
name: "16_layer_16_hidden.star.combined"
callbacks:
# - class_path: lightning.pytorch.callbacks.ModelCheckpoint
# init_args:
# dirpath: logs.autoregressive.wandb/16_refined.10_steps/checkpoints
# monitor: val/loss
# mode: min
# save_top_k: 1
# filename: best-checkpoint
# - class_path: lightning.pytorch.callbacks.EarlyStopping
# init_args:
# monitor: val/loss
# mode: min
# patience: 30
# verbose: false
- class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
init_args:
increase_unrolling_steps_by: 4
patience: 5
last_patience: 15
max_unrolling_steps: 10
ckpt_path: logs.autoregressive.wandb/10_steps/basic.star.combined/16_layer_16_hidden/
max_epochs: 1000
min_epochs: null
max_steps: -1
min_steps: null
overfit_batches: 0.0
log_every_n_steps: 0
accumulate_grad_batches: 1
default_root_dir: null
gradient_clip_val: 1.0
model:
class_path: ThermalSolver.autoregressive_module.GraphSolver
init_args:
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
model_init_args:
input_dim: 1
hidden_dim: 16
output_dim: 1
n_layers: 16
unrolling_steps: 2
data:
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
split_name:
- "4_stripes.star"
- "3_stripes.star"
- "2_stripes.star"
n_elements: 100
batch_size: 24
train_size: 0.7
val_size: 0.2
test_size: 0.1
build_radial_graph: false
remove_boundary_edges: true
unrolling_steps: 2
min_normalized_diff: 1e-4
optimizer: null
lr_scheduler: null

View File

@@ -0,0 +1,72 @@
# lightning.pytorch==2.5.5
seed_everything: 1999
trainer:
accelerator: gpu
strategy: auto
devices: 1
num_nodes: 1
precision: null
logger:
- class_path: lightning.pytorch.loggers.WandbLogger
init_args:
save_dir: logs.autoregressive.wandb
project: "thermal-conduction-unsteady-10.steps"
name: "8_layer_16_hidden.star"
callbacks:
# - class_path: lightning.pytorch.callbacks.ModelCheckpoint
# init_args:
# dirpath: logs.autoregressive.wandb/16_refined.10_steps/checkpoints
# monitor: val/loss
# mode: min
# save_top_k: 1
# filename: best-checkpoint
# - class_path: lightning.pytorch.callbacks.EarlyStopping
# init_args:
# monitor: val/loss
# mode: min
# patience: 30
# verbose: false
- class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
init_args:
increase_unrolling_steps_by: 4
patience: 5
last_patience: 15
max_unrolling_steps: 10
ckpt_path: logs.autoregressive.wandb/10_steps/basic.star/8_layer_16_hidden/
max_epochs: 1000
min_epochs: null
max_steps: -1
min_steps: null
overfit_batches: 0.0
log_every_n_steps: 0
accumulate_grad_batches: 1
default_root_dir: null
gradient_clip_val: 1.0
model:
class_path: ThermalSolver.autoregressive_module.GraphSolver
init_args:
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
model_init_args:
input_dim: 1
hidden_dim: 16
output_dim: 1
n_layers: 8
unrolling_steps: 2
data:
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
split_name: "3_stripes.star.refined"
n_elements: 100
batch_size: 24
train_size: 0.7
val_size: 0.2
test_size: 0.1
build_radial_graph: false
remove_boundary_edges: true
unrolling_steps: 2
min_normalized_diff: 1e-4
optimizer: null
lr_scheduler: null

View File

@@ -0,0 +1,76 @@
# lightning.pytorch==2.5.5
seed_everything: 1999
trainer:
accelerator: cpu
strategy: auto
devices: 1
num_nodes: 1
precision: null
# logger:
# - class_path: lightning.pytorch.loggers.WandbLogger
# init_args:
# save_dir: logs.autoregressive.wandb
# project: "thermal-conduction-unsteady-10.steps"
# name: "16_layer_16_hidden.adaptive_refined.combined"
# callbacks:
# - class_path: lightning.pytorch.callbacks.ModelCheckpoint
# init_args:
# dirpath: logs.autoregressive.wandb/16_refined.10_steps/checkpoints
# monitor: val/loss
# mode: min
# save_top_k: 1
# filename: best-checkpoint
# - class_path: lightning.pytorch.callbacks.EarlyStopping
# init_args:
# monitor: val/loss
# mode: min
# patience: 30
# verbose: false
# - class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
# init_args:
# increase_unrolling_steps_by: 4
# patience: 15
# last_patience: 20
# max_unrolling_steps: 10
# ckpt_path: logs.autoregressive.wandb/10_steps/basic.adaptive_refined.combined/16_layer_16_hidden/
max_epochs: 1000
min_epochs: null
max_steps: -1
min_steps: null
overfit_batches: 0.0
log_every_n_steps: 0
accumulate_grad_batches: 1
default_root_dir: null
gradient_clip_val: 1.0
model:
class_path: ThermalSolver.autoregressive_module.GraphSolver
init_args:
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
model_init_args:
input_dim: 1
hidden_dim: 16
output_dim: 1
n_layers: 16
unrolling_steps: 2
data:
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
split_name:
# - "2_stripes.basic.refined"
# - "3_stripes.basic.refined"
# - "4_stripes.basic.1_adaptive_refined"
- "3_stripes.star"
n_elements: 50
batch_size: 32
train_size: 0.7
val_size: 0.2
test_size: 0.1
build_radial_graph: false
remove_boundary_edges: true
unrolling_steps: 2
optimizer: null
lr_scheduler: null
ckpt_path: /home/folivo/storage/thermal-conduction-ml/logs.autoregressive.wandb/10_steps/basic.star.combined/16_layer_16_hidden/10_unrolling_best_checkpoint.ckpt