Compare commits

..

10 Commits

Author SHA1 Message Date
Filippo Olivo
edba700d2a add config file 2025-11-20 11:39:19 +01:00
Filippo Olivo
31059bf86e add model and solver that maybe works 2025-11-20 11:38:50 +01:00
Filippo Olivo
d865556c9f implement ML correction 2025-11-18 21:55:54 +01:00
Filippo Olivo
1c7b593762 improve training_step 2025-11-17 15:23:46 +01:00
Filippo Olivo
94ad6ff160 fix model 2025-11-14 17:06:08 +01:00
Filippo Olivo
e1117d89c6 fix training_step 2025-11-14 17:05:48 +01:00
Filippo Olivo
ea9cf7c57c add final loss and change model 2025-11-13 16:18:54 +01:00
Filippo Olivo
dc59114f4a try a new model 2025-11-12 15:20:43 +01:00
a2dd348423 Gradient accumulation in BPTT (#2) 2025-11-11 20:14:28 +01:00
Filippo Olivo
195c66b444 add radius graph option 2025-11-07 15:52:34 +01:00
6 changed files with 402 additions and 287 deletions

View File

@@ -18,6 +18,8 @@ class GraphDataModule(LightningDataModule):
test_size: float = 0.1,
batch_size: int = 32,
remove_boundary_edges: bool = False,
build_radial_graph: bool = False,
radius: float = None,
):
super().__init__()
self.hf_repo = hf_repo
@@ -29,6 +31,8 @@ class GraphDataModule(LightningDataModule):
self.test_size = test_size
self.batch_size = batch_size
self.remove_boundary_edges = remove_boundary_edges
self.build_radial_graph = build_radial_graph
self.radius = radius
def prepare_data(self):
dataset = load_dataset(self.hf_repo, name="snapshots")[self.split_name]
@@ -80,9 +84,8 @@ class GraphDataModule(LightningDataModule):
)
temperature = torch.tensor(snapshot["temperature"], dtype=torch.float32)
edge_index = torch.tensor(geometry["edge_index"], dtype=torch.int64).T
pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2]
bottom_ids = torch.tensor(
geometry["bottom_boundary_ids"], dtype=torch.long
)
@@ -92,20 +95,38 @@ class GraphDataModule(LightningDataModule):
geometry["right_boundary_ids"], dtype=torch.long
)
if self.build_radial_graph:
from pina.graph import RadiusGraph
if self.radius is None:
raise ValueError("Radius must be specified for radial graph.")
edge_index = RadiusGraph.compute_radius_graph(
pos, radius=self.radius
)
from torch_geometric.utils import remove_self_loops
edge_index, _ = remove_self_loops(edge_index)
else:
edge_index = torch.tensor(
geometry["edge_index"], dtype=torch.int64
).T
edge_index = to_undirected(edge_index, num_nodes=pos.size(0))
boundary_mask, boundary_values = self._compute_boundary_mask(
bottom_ids, right_ids, top_ids, left_ids, temperature
)
if self.remove_boundary_edges:
boundary_idx = torch.unique(boundary_mask)
edge_index_mask = ~torch.isin(edge_index[1], boundary_idx)
edge_index = edge_index[:, edge_index_mask]
edge_attr = pos[edge_index[0]] - pos[edge_index[1]]
edge_attr = torch.cat(
[edge_attr, torch.norm(edge_attr, dim=1).unsqueeze(-1)], dim=1
)
# edge_attr = pos[edge_index[0]] - pos[edge_index[1]]
# edge_attr = torch.cat(
# [edge_attr, torch.norm(edge_attr, dim=1).unsqueeze(-1)], dim=1
# )
edge_attr = torch.norm(pos[edge_index[0]] - pos[edge_index[1]], dim=1)
x = torch.zeros_like(temperature, dtype=torch.float32).unsqueeze(-1)
if self.remove_boundary_edges:

View File

@@ -4,6 +4,7 @@ from torch_geometric.data import Batch
import importlib
from matplotlib import pyplot as plt
from matplotlib.tri import Triangulation
from .model.finite_difference import FiniteDifferenceStep
def import_class(class_path: str):
@@ -13,7 +14,7 @@ def import_class(class_path: str):
return cls
def _plot_mesh(pos, y, y_pred, batch):
def _plot_mesh(pos, y, y_pred, batch, i):
idx = batch == 0
y = y[idx].detach().cpu()
@@ -36,48 +37,48 @@ def _plot_mesh(pos, y, y_pred, batch):
plt.colorbar()
plt.title("Error")
plt.suptitle("GNO", fontsize=16)
plt.savefig("gno.png", dpi=300)
name = f"images/graph_iter_{i:04d}.png"
plt.savefig(name, dpi=72)
plt.close()
class GraphSolver(LightningModule):
def __init__(
self,
model_class_path: str,
model_init_args: dict,
model_init_args: dict = {},
loss: torch.nn.Module = None,
unrolling_steps: int = 48,
curriculum_learning: bool = False,
start_iters: int = 10,
increase_every: int = 100,
increase_rate: float = 1.1,
max_iters: int = 1000,
accumulation_iters: int = None,
):
super().__init__()
self.model = import_class(model_class_path)(**model_init_args)
self.fd_net = FiniteDifferenceStep()
self.loss = loss if loss is not None else torch.nn.MSELoss()
self.unrolling_steps = unrolling_steps
self.curriculum_learning = curriculum_learning
self.start_iters = start_iters
self.increase_every = increase_every
self.increase_rate = increase_rate
self.max_iters = max_iters
self.current_iters = start_iters
self.accumulation_iters = accumulation_iters
self.automatic_optimization = False
self.threshold = 1e-5
def forward(
self,
x: torch.Tensor,
c: torch.Tensor,
edge_index: torch.Tensor,
edge_attr: torch.Tensor,
unrolling_steps: int = None,
boundary_mask: torch.Tensor = None,
boundary_values: torch.Tensor = None,
):
return self.model(
x=x,
c=c,
edge_index=edge_index,
edge_attr=edge_attr,
unrolling_steps=unrolling_steps,
boundary_mask=boundary_mask,
boundary_values=boundary_values,
)
self.alpha = torch.nn.Parameter(torch.tensor(0.1))
def _compute_deg(self, edge_index, edge_attr, num_nodes):
deg = torch.zeros(num_nodes, device=edge_index.device)
deg = deg.scatter_add(0, edge_index[1], edge_attr)
return deg + 1e-7
def _compute_loss(self, x, y):
return self.loss(x, y)
def _preprocess_batch(self, batch: Batch):
return batch.x, batch.y, batch.c, batch.edge_index, batch.edge_attr
def _log_loss(self, loss, batch, stage: str):
self.log(
f"{stage}/loss",
@@ -89,89 +90,206 @@ class GraphSolver(LightningModule):
)
return loss
@staticmethod
def _compute_c_ij(c, edge_index):
"""
TODO: add docstring.
"""
return (0.5 * (c[edge_index[0]] + c[edge_index[1]])).squeeze()
def _compute_model_steps(
self, x, edge_index, edge_attr, deg, boundary_mask, boundary_values
):
# with torch.no_grad():
# out = self.fd_net(x, edge_index, edge_attr, deg)
# out[boundary_mask] = boundary_values.unsqueeze(-1)
# diff = out - x
# out = self.model(out, edge_index, edge_attr, deg)
# out = out + self.alpha * correction
# out[boundary_mask] = boundary_values.unsqueeze(-1)
out = self.model(x, edge_index, edge_attr, deg)
out[boundary_mask] = boundary_values.unsqueeze(-1)
return out
def _check_convergence(self, out, x):
residual_norm = torch.norm(out - x)
if residual_norm < self.threshold * torch.norm(x):
return True
return False
def accumulate_gradients(self, losses):
loss_ = torch.stack(losses, dim=0).mean()
self.manual_backward(loss_, retain_graph=True)
return loss_.item()
def _preprocess_batch(self, batch: Batch):
x, y, c, edge_index, edge_attr = (
batch.x,
batch.y,
batch.c,
batch.edge_index,
batch.edge_attr,
)
edge_attr = 1 / edge_attr
c_ij = self._compute_c_ij(c, edge_index)
edge_attr = edge_attr * c_ij
return x, y, edge_index, edge_attr
def training_step(self, batch: Batch, _):
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
y_pred, it = self(
optim = self.optimizers()
optim.zero_grad()
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
losses = []
acc_loss, acc_it = 0, 0
for i in range(self.current_iters):
out = self._compute_model_steps(
x,
c,
edge_index=edge_index,
edge_attr=edge_attr,
unrolling_steps=self.unrolling_steps,
boundary_mask=batch.boundary_mask,
boundary_values=batch.boundary_values,
edge_index,
edge_attr.unsqueeze(-1),
deg,
batch.boundary_mask,
batch.boundary_values,
)
loss = self.loss(y_pred, y)
boundary_loss = self.loss(
y_pred[batch.boundary_mask], y[batch.boundary_mask]
losses.append(self.loss(out, y))
# Accumulate gradients if reached accumulation iters
if (
self.accumulation_iters is not None
and (i + 1) % self.accumulation_iters == 0
):
loss = self.accumulate_gradients(losses)
losses = []
acc_it += 1
out = out.detach()
acc_loss = acc_loss + loss
# Check for convergence and break if converged (with final accumulation)
converged = self._check_convergence(out, x)
if converged:
if losses:
loss = self.accumulate_gradients(losses)
acc_it += 1
acc_loss = acc_loss + loss
break
# Final accumulation if we are at the last iteration
if i == self.current_iters - 1:
if losses:
loss = self.accumulate_gradients(losses)
acc_it += 1
acc_loss = acc_loss + loss
x = out
loss = self.loss(out, y)
for param in self.model.parameters():
if param.grad is not None:
param.grad /= acc_it
optim.step()
optim.zero_grad()
self.log(
"train/accumulated_loss",
(acc_loss / acc_it if acc_it > 0 else acc_loss),
on_step=False,
on_epoch=True,
prog_bar=True,
batch_size=int(batch.num_graphs),
)
self._log_loss(loss, batch, "train")
# self._log_loss(boundary_loss, batch, "train_boundary")
self.log(
"train/iterations",
it,
i + 1,
on_step=False,
on_epoch=True,
prog_bar=True,
batch_size=int(batch.num_graphs),
)
if hasattr(self.model, "p"):
self.log(
"train/param_p",
self.model.fd_step.p,
"train/p",
self.model.p,
on_step=False,
on_epoch=True,
prog_bar=True,
batch_size=int(batch.num_graphs),
)
# self.log("train/param_a", self.model.fd_step.a, on_step=False, on_epoch=True, prog_bar=True, batch_size=int(batch.num_graphs))
return loss
def on_train_epoch_end(self):
if self.curriculum_learning:
if (self.current_iters < self.max_iters) and (
self.current_epoch % self.increase_every == 0
):
self.current_iters = min(
int(self.current_iters * self.increase_rate), self.max_iters
)
return super().on_train_epoch_end()
def validation_step(self, batch: Batch, _):
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
y_pred, it = self(
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
for i in range(self.current_iters):
out = self._compute_model_steps(
x,
c,
edge_index=edge_index,
edge_attr=edge_attr,
unrolling_steps=self.unrolling_steps,
boundary_mask=batch.boundary_mask,
boundary_values=batch.boundary_values,
)
loss = self.loss(y_pred, y)
boundary_loss = self.loss(
y_pred[batch.boundary_mask], y[batch.boundary_mask]
edge_index,
edge_attr.unsqueeze(-1),
deg,
batch.boundary_mask,
batch.boundary_values,
)
converged = self._check_convergence(out, x)
if converged:
break
x = out
loss = self.loss(out, y)
self._log_loss(loss, batch, "val")
self.log(
"val/iterations",
it,
i + 1,
on_step=False,
on_epoch=True,
prog_bar=True,
batch_size=int(batch.num_graphs),
)
return loss
def test_step(self, batch: Batch, _):
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
y_pred, _ = self.model(
x=x,
c=c,
edge_index=edge_index,
edge_attr=edge_attr,
unrolling_steps=self.unrolling_steps,
batch=batch.batch,
pos=batch.pos,
boundary_mask=batch.boundary_mask,
boundary_values=batch.boundary_values,
plot_results=False,
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
for i in range(self.max_iters):
out = self._compute_model_steps(
x,
edge_index,
edge_attr.unsqueeze(-1),
deg,
batch.boundary_mask,
batch.boundary_values,
)
loss = self._compute_loss(y_pred, y)
_plot_mesh(batch.pos, y, y_pred, batch.batch)
converged = self._check_convergence(out, x)
# _plot_mesh(batch.pos, y, out, batch.batch, i)
if converged:
break
x = out
loss = self.loss(out, y)
self._log_loss(loss, batch, "test")
return loss
self.log(
"test/iterations",
i + 1,
on_step=False,
on_epoch=True,
prog_bar=True,
batch_size=int(batch.num_graphs),
)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
optimizer = torch.optim.AdamW(self.parameters(), lr=1e-3)
return optimizer
def _impose_bc(self, x: torch.Tensor, data: Batch):

View File

@@ -1,13 +1,13 @@
__all__ = [
"GraphFiniteDifference",
# "GraphFiniteDifference",
"GatingGNO",
"LearnableGraphFiniteDifference",
# "LearnableGraphFiniteDifference",
"PointNet",
]
from .learnable_finite_difference import (
GraphFiniteDifference as LearnableGraphFiniteDifference,
)
from .finite_difference import GraphFiniteDifference as GraphFiniteDifference
# from .learnable_finite_difference import (
# GraphFiniteDifference as LearnableGraphFiniteDifference,
# )
# from .finite_difference import GraphFiniteDifference as GraphFiniteDifference
from .local_gno import GatingGNO
from .point_net import PointNet

View File

@@ -1,6 +1,7 @@
import torch
import torch.nn as nn
from torch_geometric.nn import MessagePassing
from torch.nn.utils import spectral_norm
class FiniteDifferenceStep(MessagePassing):
@@ -8,14 +9,8 @@ class FiniteDifferenceStep(MessagePassing):
TODO: add docstring.
"""
def __init__(self, aggr: str = "add", root_weight: float = 1.0):
super().__init__(aggr=aggr)
assert (
aggr == "add"
), "Per somme pesate, l'aggregazione deve essere 'add'."
# self.root_weight = float(root_weight)
self.p = torch.nn.Parameter(torch.tensor(0.8))
self.a = root_weight
def __init__(self):
super().__init__(aggr="add")
def forward(self, x, edge_index, edge_attr, deg):
"""
@@ -28,8 +23,13 @@ class FiniteDifferenceStep(MessagePassing):
"""
TODO: add docstring.
"""
p = torch.clamp(self.p, 0.0, 1.0)
return p * edge_attr.view(-1, 1) * x_j
return x_j * edge_attr
def update(self, aggr_out, _):
"""
TODO: add docstring.
"""
return aggr_out
def aggregate(self, inputs, index, deg):
"""
@@ -38,84 +38,3 @@ class FiniteDifferenceStep(MessagePassing):
out = super().aggregate(inputs, index)
deg = deg + 1e-7
return out / deg.view(-1, 1)
def update(self, aggr_out, x):
"""
TODO: add docstring.
"""
a = torch.clamp(self.a, 0.0, 1.0)
return a * aggr_out + (1 - a) * x
# return self.a * aggr_out + (1 - self.a) * x
class GraphFiniteDifference(nn.Module):
"""
TODO: add docstring.
"""
def __init__(self, max_iters: int = 5000, threshold: float = 1e-4):
"""
TODO: add docstring.
"""
super().__init__()
self.max_iters = max_iters
self.threshold = threshold
self.fd_step = FiniteDifferenceStep(aggr="add", root_weight=1.0)
@staticmethod
def _compute_deg(edge_index, edge_attr, num_nodes):
"""
TODO: add docstring.
"""
deg = torch.zeros(num_nodes, device=edge_index.device)
deg = deg.scatter_add(0, edge_index[1], edge_attr)
return deg + 1e-7
@staticmethod
def _compute_c_ij(c, edge_index):
"""
TODO: add docstring.
"""
return (0.5 * (c[edge_index[0]] + c[edge_index[1]])).squeeze()
def forward(
self,
x,
edge_index,
edge_attr,
c,
boundary_mask,
boundary_values,
**kwargs,
):
"""
TODO: add docstring.
"""
edge_attr = 1 / edge_attr[:, -1]
c_ij = self._compute_c_ij(c, edge_index)
edge_attr = edge_attr * c_ij
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
# Calcola la soglia staccando x dal grafo
conv_thres = self.threshold * torch.norm(x.detach())
for _i in range(self.max_iters):
out = self.fd_step(x, edge_index, edge_attr, deg)
out[boundary_mask] = boundary_values.unsqueeze(-1)
# Controllo convergenza senza tracciamento gradienti
with torch.no_grad():
residual_norm = torch.norm(out - x)
if residual_norm < conv_thres:
break
# --- OTTIMIZZAZIONE CHIAVE ---
# Stacca 'out' dal grafo prima della prossima iterazione
# per evitare BPTT e risparmiare memoria.
x = out.detach()
# Il 'out' finale restituito mantiene i gradienti
# dell'ULTIMA chiamata a fd_step, permettendo al modello
# di apprendere correttamente.
return out, _i + 1

View File

@@ -1,58 +1,119 @@
# import torch
# import torch.nn as nn
# from torch_geometric.nn import MessagePassing
# from torch.nn.utils import spectral_norm
# class GCNConvLayer(MessagePassing):
# def __init__(self, in_channels, out_channels):
# super().__init__(aggr="add")
# self.lin_l = spectral_norm(nn.Linear(in_channels, out_channels, bias=False))
# self.lin_r = spectral_norm(nn.Linear(in_channels, out_channels, bias=False))
# def forward(self, x, edge_index, edge_attr, deg):
# out = self.propagate(edge_index, x=x, edge_attr=edge_attr, deg=deg)
# out = self.lin_l(out)
# return out
# def message(self, x_j, edge_attr):
# return x_j * edge_attr
# def aggregate(self, inputs, index, deg):
# """
# TODO: add docstring.
# """
# out = super().aggregate(inputs, index)
# deg = deg + 1e-7
# return out / deg.view(-1, 1)
# class CorrectionNet(nn.Module):
# def __init__(self, hidden_dim=8, n_layers=1):
# super().__init__()
# # self.enc = GCNConvLayer(1, hidden_dim)
# self.enc = nn.Sequential(
# spectral_norm(nn.Linear(1, hidden_dim//2)),
# nn.GELU(),
# spectral_norm(nn.Linear(hidden_dim//2, hidden_dim)),
# )
# self.layers = torch.nn.ModuleList([GCNConvLayer(hidden_dim, hidden_dim) for _ in range(n_layers)])
# self.relu = nn.GELU()
# self.dec = nn.Sequential(
# spectral_norm(nn.Linear(hidden_dim, hidden_dim//2)),
# nn.GELU(),
# spectral_norm(nn.Linear(hidden_dim//2, 1)),
# )
# def forward(self, x, edge_index, edge_attr, deg,):
# # h = self.enc(x, edge_index, edge_attr, deg)
# # h = self.relu(self.enc(x))
# h = self.enc(x)
# for layer in self.layers:
# h = layer(h, edge_index, edge_attr, deg)
# # h = self.norm(h)
# h = self.relu(h)
# # out = self.dec(h, edge_index, edge_attr, deg)
# out = self.dec(h)
# return out
import torch
import torch.nn as nn
from torch_geometric.nn import MessagePassing
from torch.nn.utils import spectral_norm
class FiniteDifferenceStep(MessagePassing):
class CorrectionNet(MessagePassing):
"""
TODO: add docstring.
"""
def __init__(self, aggr: str = "add", root_weight: float = 1.0):
super().__init__(aggr=aggr)
assert (
aggr == "add"
), "Per somme pesate, l'aggregazione deve essere 'add'."
self.correction_net = nn.Sequential(
nn.Linear(2, 6),
nn.Tanh(),
nn.Linear(6, 1),
nn.Tanh(),
)
self.update_net = nn.Sequential(
spectral_norm(nn.Linear(1, 6)),
nn.Softplus(),
spectral_norm(nn.Linear(6, 1)),
nn.Softplus(),
def __init__(self, hidden_dim=16):
super().__init__(aggr="add")
self.in_net = nn.Sequential(
spectral_norm(nn.Linear(1, hidden_dim // 2)),
nn.GELU(),
spectral_norm(nn.Linear(hidden_dim // 2, hidden_dim)),
)
self.message_net = nn.Sequential(
spectral_norm(nn.Linear(1, 6)),
nn.Softplus(),
spectral_norm(nn.Linear(6, 1)),
nn.Softplus(),
self.out_net = nn.Sequential(
spectral_norm(nn.Linear(hidden_dim, hidden_dim // 2)),
nn.GELU(),
spectral_norm(nn.Linear(hidden_dim // 2, 1)),
)
self.p = torch.nn.Parameter(torch.tensor(0.5))
# self.a = torch.nn.Parameter(torch.tensor(root_weight))
self.lin_msg = spectral_norm(
nn.Linear(hidden_dim, hidden_dim, bias=False)
)
self.lin_update = spectral_norm(
nn.Linear(hidden_dim, hidden_dim, bias=False)
)
self.alpha = nn.Parameter(torch.tensor(0.0))
self.beta = nn.Parameter(torch.tensor(0.0))
def forward(self, x, edge_index, edge_attr, deg):
"""
TODO: add docstring.
"""
x = self.in_net(x)
out = self.propagate(edge_index, x=x, edge_attr=edge_attr, deg=deg)
return out
return self.out_net(out)
def message(self, x_j, edge_attr):
"""
TODO: add docstring.
"""
# x_in = torch.cat([x_j, edge_attr.view(-1, 1)], dim=-1)
# correction = self.correction_net(x_in)
# p = torch.sigmoid(self.p)
# return (p * edge_attr.view(-1, 1) + (1 - p) * correction) * x_j
return edge_attr.view(-1, 1) * x_j
alpha = torch.sigmoid(self.alpha)
msg = x_j * edge_attr
msg = (1 - alpha) * msg + alpha * self.lin_msg(msg)
return msg
def update(self, aggr_out, x):
"""
TODO: add docstring.
"""
beta = torch.sigmoid(self.beta)
return aggr_out * (1 - beta) + self.lin_msg(x) * beta
def aggregate(self, inputs, index, deg):
"""
@@ -61,69 +122,3 @@ class FiniteDifferenceStep(MessagePassing):
out = super().aggregate(inputs, index)
deg = deg + 1e-7
return out / deg.view(-1, 1)
def update(self, aggr_out, x):
"""
TODO: add docstring.
"""
return self.update_net(aggr_out)
class GraphFiniteDifference(nn.Module):
"""
TODO: add docstring.
"""
def __init__(self, max_iters: int = 5000, threshold: float = 1e-4):
"""
TODO: add docstring.
"""
super().__init__()
self.max_iters = max_iters
self.threshold = threshold
self.fd_step = FiniteDifferenceStep(aggr="add", root_weight=1.0)
@staticmethod
def _compute_deg(edge_index, edge_attr, num_nodes):
"""
TODO: add docstring.
"""
deg = torch.zeros(num_nodes, device=edge_index.device)
deg = deg.scatter_add(0, edge_index[1], edge_attr)
return deg + 1e-7
@staticmethod
def _compute_c_ij(c, edge_index):
"""
TODO: add docstring.
"""
return (0.5 * (c[edge_index[0]] + c[edge_index[1]])).squeeze()
def forward(
self,
x,
edge_index,
edge_attr,
c,
boundary_mask,
boundary_values,
**kwargs,
):
"""
TODO: add docstring.
"""
edge_attr = 1 / edge_attr[:, -1]
c_ij = self._compute_c_ij(c, edge_index)
edge_attr = edge_attr * c_ij
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
conv_thres = self.threshold * torch.norm(x.detach())
for _i in range(self.max_iters):
out = self.fd_step(x, edge_index, edge_attr, deg)
out[boundary_mask] = boundary_values.unsqueeze(-1)
with torch.no_grad():
residual_norm = torch.norm(out - x)
if residual_norm < conv_thres:
break
x = out.detach()
return out, _i + 1

View File

@@ -0,0 +1,62 @@
# lightning.pytorch==2.5.5
seed_everything: 1999
trainer:
accelerator: gpu
strategy: auto
devices: 1
num_nodes: 1
precision: null
logger:
- class_path: lightning.pytorch.loggers.TensorBoardLogger
init_args:
save_dir: logs
name: "test"
version: null
callbacks:
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
init_args:
monitor: val/loss
mode: min
save_top_k: 1
filename: best-checkpoint
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
monitor: val/loss
mode: min
patience: 25
verbose: false
max_epochs: 1000
min_epochs: null
max_steps: -1
min_steps: null
overfit_batches: 0.0
log_every_n_steps: null
# inference_mode: true
default_root_dir: null
# accumulate_grad_batches: 2
# gradient_clip_val: 1.0
model:
class_path: ThermalSolver.graph_module.GraphSolver
init_args:
model_class_path: ThermalSolver.model.learnable_finite_difference.CorrectionNet
curriculum_learning: true
start_iters: 5
increase_every: 10
increase_rate: 2
max_iters: 2000
accumulation_iters: 320
data:
class_path: ThermalSolver.graph_datamodule.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction"
split_name: "1000_40x30"
batch_size: 32
train_size: 0.8
test_size: 0.1
test_size: 0.1
build_radial_graph: false
radius: 0.6
remove_boundary_edges: false
optimizer: null
lr_scheduler: null
# ckpt_path: logs/test/version_0/checkpoints/best-checkpoint.ckpt