Files
thermal-conduction-ml/ThermalSolver/autoregressive_module.py
FilippoOlivo 54bebf7154 fix model
2025-12-01 14:55:13 +01:00

231 lines
7.6 KiB
Python

import torch
from lightning import LightningModule
from torch_geometric.data import Batch
import importlib
from matplotlib import pyplot as plt
from matplotlib.tri import Triangulation
from .model.finite_difference import FiniteDifferenceStep
import os
def import_class(class_path: str):
module_path, class_name = class_path.rsplit(".", 1) # split last dot
module = importlib.import_module(module_path) # import the module
cls = getattr(module, class_name) # get the class
return cls
def _plot_mesh(pos_, y_, y_pred_, y_true_, batch, i, batch_idx):
for j in [0, 10, 20, 30]:
idx = (batch == j).nonzero(as_tuple=True)[0]
y = y_[idx].detach().cpu()
y_pred = y_pred_[idx].detach().cpu()
pos = pos_[idx].detach().cpu()
y_true = y_true_[idx].detach().cpu()
y_true = torch.clamp(y_true, min=0)
folder = f"{j:02d}_images"
if os.path.exists(folder) is False:
os.makedirs(folder)
pos = pos.detach().cpu()
tria = Triangulation(pos[:, 0], pos[:, 1])
plt.figure(figsize=(24, 5))
plt.subplot(1, 4, 1)
plt.tricontourf(tria, y.squeeze().numpy(), levels=100)
plt.colorbar()
plt.title("Step t-1")
plt.subplot(1, 4, 2)
plt.tricontourf(tria, y_pred.squeeze().numpy(), levels=100)
plt.colorbar()
plt.title("Step t Predicted")
plt.subplot(1, 4, 3)
plt.tricontourf(tria, y_true.squeeze().numpy(), levels=100)
plt.colorbar()
plt.title("t True")
plt.subplot(1, 4, 4)
plt.tricontourf(tria, (y_true - y_pred).squeeze().numpy(), levels=100)
plt.colorbar()
plt.title("Error")
plt.suptitle("GNO", fontsize=16)
name = f"{folder}/{j:04d}_graph_iter_{i:04d}.png"
plt.savefig(name, dpi=72)
plt.close()
def _plot_losses(losses, batch_idx):
folder = f"{batch_idx:02d}_images"
plt.figure()
plt.plot(losses)
plt.yscale("log")
plt.xlabel("Iteration")
plt.ylabel("Loss")
plt.title("Test Loss over Iterations")
plt.grid(True)
file_name = f"{folder}/test_loss.png"
plt.savefig(file_name, dpi=300)
plt.close()
class GraphSolver(LightningModule):
def __init__(
self,
model_class_path: str,
model_init_args: dict = {},
loss: torch.nn.Module = None,
unrolling_steps: int = 1,
):
super().__init__()
self.model = import_class(model_class_path)(**model_init_args)
# for param in self.model.parameters():
# print(f"Param: {param.shape}, Grad: {param.grad}")
# print(f"Param: {param[0]}")
self.loss = loss if loss is not None else torch.nn.MSELoss()
self.unrolling_steps = unrolling_steps
def _compute_loss(self, x, y):
return self.loss(x, y)
def _log_loss(self, loss, batch, stage: str):
self.log(
f"{stage}/loss",
loss,
on_step=False,
on_epoch=True,
prog_bar=True,
batch_size=int(batch.num_graphs),
)
return loss
@staticmethod
def _compute_c_ij(c, edge_index):
"""
TODO: add docstring.
"""
return (0.5 * (c[edge_index[0]] + c[edge_index[1]])).squeeze()
def _compute_model_steps(
self,
x,
edge_index,
edge_attr,
boundary_mask,
boundary_values,
conductivity,
):
out = self.model(x, edge_index, edge_attr, conductivity)
out[boundary_mask] = boundary_values.unsqueeze(-1)
return out
def _preprocess_batch(self, batch: Batch):
x, y, c, edge_index, edge_attr, nodal_area = (
batch.x,
batch.y,
batch.c,
batch.edge_index,
batch.edge_attr,
batch.nodal_area,
)
edge_attr = 1 / edge_attr
conductivity = self._compute_c_ij(c, edge_index)
edge_attr = edge_attr * conductivity
return x, y, edge_index, edge_attr, conductivity
def training_step(self, batch: Batch):
x, y, edge_index, edge_attr, conductivity = self._preprocess_batch(
batch
)
# deg = self._compute_deg(edge_index, edge_attr, x.size(0))
losses = []
# print(x.shape, y.shape)
# # print(torch.max(edge_index), torch.min(edge_index))
# plt.figure()
# plt.subplot(2,3,1)
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=x.squeeze().cpu())
# plt.subplot(2,3,2)
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,0,:].squeeze().cpu())
# plt.subplot(2,3,3)
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,1,:].squeeze().cpu())
# plt.subplot(2,3,4)
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,2,:].squeeze().cpu())
# plt.subplot(2,3,5)
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,3,:].squeeze().cpu())
# plt.subplot(2,3,6)
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,4,:].squeeze().cpu())
# plt.suptitle("Training Batch Visualization", fontsize=16)
# plt.savefig("training_batch_visualization.png", dpi=300)
# plt.close()
# y = z
pos = batch.pos
boundary_mask = batch.boundary_mask
boundary_values = batch.boundary_values
# plt.scatter(pos[boundary_mask,0].cpu(), pos[boundary_mask,1].cpu(), c=boundary_values.cpu(), s=1)
# plt.savefig("boundary_nodes.png", dpi=300)
# y = z
scale = 50
for i in range(self.unrolling_steps):
out = self._compute_model_steps(
x,
edge_index,
edge_attr,
# deg,
batch.boundary_mask,
batch.boundary_values,
conductivity,
)
x = out
# print(out.shape, y[:, i, :].shape)
losses.append(self.loss(out.flatten(), y[:, i, :].flatten()))
# print(self.model.scale_edge_attr.item())
loss = torch.stack(losses).mean()
# for param in self.model.parameters():
# print(f"Param: {param.shape}, Grad: {param.grad}")
# print(f"Param: {param[0]}")
self._log_loss(loss, batch, "train")
return loss
def validation_step(self, batch: Batch, batch_idx):
x, y, edge_index, edge_attr, conductivity = self._preprocess_batch(
batch
)
# deg = self._compute_deg(edge_index, edge_attr, x.size(0))
losses = []
pos = batch.pos
for i in range(self.unrolling_steps):
out = self._compute_model_steps(
# torch.cat([x,pos], dim=-1),
x,
edge_index,
edge_attr,
# deg,
batch.boundary_mask,
batch.boundary_values,
conductivity,
)
if (
batch_idx == 0
and self.current_epoch % 10 == 0
and self.current_epoch > 0
):
_plot_mesh(
batch.pos,
x,
out,
y[:, i, :],
batch.batch,
i,
self.current_epoch,
)
x = out
losses.append(self.loss(out, y[:, i, :]))
loss = torch.stack(losses).mean()
self._log_loss(loss, batch, "val")
return loss
def test_step(self, batch: Batch, batch_idx):
pass
def configure_optimizers(self):
optimizer = torch.optim.AdamW(self.parameters(), lr=1e-3)
return optimizer