Files
thermal-conduction-ml/experiments/config_4_layer_8_hidden.yaml
2025-12-01 14:58:23 +01:00

63 lines
1.6 KiB
YAML

# lightning.pytorch==2.5.5
seed_everything: 1999
trainer:
accelerator: gpu
strategy: auto
devices: 1
num_nodes: 1
precision: null
logger:
- class_path: lightning.pytorch.loggers.WandbLogger
init_args:
save_dir: logs.autoregressive.wandb
project: "thermal-conduction-unsteady"
name: "5_step_4_layers_8_hidden"
callbacks:
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
init_args:
dirpath: logs.autoregressive.wandb/5_step_4_layers_8_hidden_0.7_radius/checkpoints
monitor: val/loss
mode: min
save_top_k: 1
filename: best-checkpoint
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
monitor: val/loss
mode: min
patience: 10
verbose: false
max_epochs: 1000
min_epochs: null
max_steps: -1
min_steps: null
overfit_batches: 0.0
log_every_n_steps: null
accumulate_grad_batches: 1
default_root_dir: null
model:
class_path: ThermalSolver.autoregressive_module.GraphSolver
init_args:
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
model_init_args:
input_dim: 1
hidden_dim: 8
output_dim: 1
n_layers: 4
unrolling_steps: 5
data:
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
split_name: "100_samples_easy_refined"
batch_size: 32
train_size: 0.7
val_size: 0.2
test_size: 0.1
build_radial_graph: false
remove_boundary_edges: true
start_unrolling_steps: 5
optimizer: null
lr_scheduler: null