Files
thermal-conduction-ml/ThermalSolver/model/finite_difference.py

103 lines
2.7 KiB
Python

import torch
import torch.nn as nn
from torch_geometric.nn import MessagePassing
from tqdm import tqdm
class FiniteDifferenceStep(MessagePassing):
"""
TODO: add docstring.
"""
def __init__(
self,
aggr: str = "add",
normalize: bool = True,
root_weight: float = 1.0,
):
super().__init__(aggr=aggr)
self.normalize = normalize
assert (
aggr == "add"
), "Per somme pesate, l'aggregazione deve essere 'add'."
self.root_weight = float(root_weight)
def forward(self, x, edge_index, edge_weight, deg):
"""
TODO: add docstring.
"""
out = self.propagate(edge_index, x=x, edge_weight=edge_weight, deg=deg)
return out
def message(self, x_j, edge_weight):
"""
TODO: add docstring.
"""
return edge_weight.view(-1, 1) * x_j
def aggregate(self, inputs, index, deg):
"""
TODO: add docstring.
"""
out = super().aggregate(inputs, index)
deg = deg + 1e-7
return out / deg.view(-1, 1)
def update(self, aggr_out, x):
"""
TODO: add docstring.
"""
return self.root_weight * aggr_out + (1 - self.root_weight) * x
class GraphFiniteDifference(nn.Module):
"""
TODO: add docstring.
"""
def __init__(self, max_iters: int = 1000, threshold: float = 1e-4):
"""
TODO: add docstring.
"""
super().__init__()
self.max_iters = max_iters
self.threshold = threshold
self.fd_step = FiniteDifferenceStep(
aggr="add", normalize=True, root_weight=1.0
)
@staticmethod
def _compute_deg(edge_index, edge_weight, num_nodes):
"""
TODO: add docstring.
"""
deg = torch.zeros(num_nodes, device=edge_index.device)
deg = deg.scatter_add(0, edge_index[1], edge_weight)
return deg + 1e-7
@staticmethod
def _compute_c_ij(c, edge_index):
"""
TODO: add docstring.
"""
return (0.5 * (c[edge_index[0]] + c[edge_index[1]])).squeeze()
def forward(
self, x, edge_index, edge_weight, c, boundary_mask, boundary_values
):
"""
TODO: add docstring.
"""
c_ij = self._compute_c_ij(c, edge_index)
edge_weight = edge_weight * c_ij
deg = self._compute_deg(edge_index, edge_weight, x.size(0))
conv_thres = self.threshold * torch.norm(x)
for _i in tqdm(range(self.max_iters)):
out = self.fd_step(x, edge_index, edge_weight, deg)
out[boundary_mask] = boundary_values.unsqueeze(-1)
if torch.norm(out - x) < conv_thres:
break
x = out
return out