Files
thermal-conduction-ml/ThermalSolver/model/learnable_finite_difference.py
2025-11-20 11:38:50 +01:00

125 lines
3.9 KiB
Python

# import torch
# import torch.nn as nn
# from torch_geometric.nn import MessagePassing
# from torch.nn.utils import spectral_norm
# class GCNConvLayer(MessagePassing):
# def __init__(self, in_channels, out_channels):
# super().__init__(aggr="add")
# self.lin_l = spectral_norm(nn.Linear(in_channels, out_channels, bias=False))
# self.lin_r = spectral_norm(nn.Linear(in_channels, out_channels, bias=False))
# def forward(self, x, edge_index, edge_attr, deg):
# out = self.propagate(edge_index, x=x, edge_attr=edge_attr, deg=deg)
# out = self.lin_l(out)
# return out
# def message(self, x_j, edge_attr):
# return x_j * edge_attr
# def aggregate(self, inputs, index, deg):
# """
# TODO: add docstring.
# """
# out = super().aggregate(inputs, index)
# deg = deg + 1e-7
# return out / deg.view(-1, 1)
# class CorrectionNet(nn.Module):
# def __init__(self, hidden_dim=8, n_layers=1):
# super().__init__()
# # self.enc = GCNConvLayer(1, hidden_dim)
# self.enc = nn.Sequential(
# spectral_norm(nn.Linear(1, hidden_dim//2)),
# nn.GELU(),
# spectral_norm(nn.Linear(hidden_dim//2, hidden_dim)),
# )
# self.layers = torch.nn.ModuleList([GCNConvLayer(hidden_dim, hidden_dim) for _ in range(n_layers)])
# self.relu = nn.GELU()
# self.dec = nn.Sequential(
# spectral_norm(nn.Linear(hidden_dim, hidden_dim//2)),
# nn.GELU(),
# spectral_norm(nn.Linear(hidden_dim//2, 1)),
# )
# def forward(self, x, edge_index, edge_attr, deg,):
# # h = self.enc(x, edge_index, edge_attr, deg)
# # h = self.relu(self.enc(x))
# h = self.enc(x)
# for layer in self.layers:
# h = layer(h, edge_index, edge_attr, deg)
# # h = self.norm(h)
# h = self.relu(h)
# # out = self.dec(h, edge_index, edge_attr, deg)
# out = self.dec(h)
# return out
import torch
import torch.nn as nn
from torch_geometric.nn import MessagePassing
from torch.nn.utils import spectral_norm
class CorrectionNet(MessagePassing):
"""
TODO: add docstring.
"""
def __init__(self, hidden_dim=16):
super().__init__(aggr="add")
self.in_net = nn.Sequential(
spectral_norm(nn.Linear(1, hidden_dim // 2)),
nn.GELU(),
spectral_norm(nn.Linear(hidden_dim // 2, hidden_dim)),
)
self.out_net = nn.Sequential(
spectral_norm(nn.Linear(hidden_dim, hidden_dim // 2)),
nn.GELU(),
spectral_norm(nn.Linear(hidden_dim // 2, 1)),
)
self.lin_msg = spectral_norm(
nn.Linear(hidden_dim, hidden_dim, bias=False)
)
self.lin_update = spectral_norm(
nn.Linear(hidden_dim, hidden_dim, bias=False)
)
self.alpha = nn.Parameter(torch.tensor(0.0))
self.beta = nn.Parameter(torch.tensor(0.0))
def forward(self, x, edge_index, edge_attr, deg):
"""
TODO: add docstring.
"""
x = self.in_net(x)
out = self.propagate(edge_index, x=x, edge_attr=edge_attr, deg=deg)
return self.out_net(out)
def message(self, x_j, edge_attr):
"""
TODO: add docstring.
"""
alpha = torch.sigmoid(self.alpha)
msg = x_j * edge_attr
msg = (1 - alpha) * msg + alpha * self.lin_msg(msg)
return msg
def update(self, aggr_out, x):
"""
TODO: add docstring.
"""
beta = torch.sigmoid(self.beta)
return aggr_out * (1 - beta) + self.lin_msg(x) * beta
def aggregate(self, inputs, index, deg):
"""
TODO: add docstring.
"""
out = super().aggregate(inputs, index)
deg = deg + 1e-7
return out / deg.view(-1, 1)