Files
thermal-conduction-ml/ThermalSolver/graph_datamodule_unsteady.py
2025-12-15 09:08:21 +01:00

252 lines
8.7 KiB
Python

import torch
from tqdm import tqdm
from lightning import LightningDataModule
from datasets import load_dataset, concatenate_datasets
from torch_geometric.data import Data
from torch_geometric.loader import DataLoader
from torch_geometric.utils import to_undirected
from .mesh_data import MeshData
from typing import List, Union
class GraphDataModule(LightningDataModule):
def __init__(
self,
hf_repo: str,
split_name: Union[str, List[str]],
n_elements: int = None,
train_size: float = 0.2,
val_size: float = 0.1,
test_size: float = 0.1,
batch_size: int = 32,
remove_boundary_edges: bool = False,
build_radial_graph: bool = False,
radius: float = None,
unrolling_steps: int = 1,
):
super().__init__()
self.hf_repo = hf_repo
self.split_name = split_name
self.n_elements = n_elements
self.dataset_dict = {}
self.train_dataset, self.val_dataset, self.test_dataset = (
None,
None,
None,
)
self.unrolling_steps = unrolling_steps
self.geometry_dict = {}
self.train_size = train_size
self.val_size = val_size
self.test_size = test_size
self.batch_size = batch_size
self.remove_boundary_edges = remove_boundary_edges
self.build_radial_graph = build_radial_graph
self.radius = radius
def prepare_data(self):
if isinstance(self.split_name, list):
dataset_list = []
geometry_list = []
for split in self.split_name:
dataset_list.append(
load_dataset(self.hf_repo, name="snapshots")[split]
)
geometry_list.append(
load_dataset(self.hf_repo, name="geometry")[split]
)
dataset = concatenate_datasets(dataset_list)
geometry = concatenate_datasets(geometry_list)
idx = torch.randperm(len(dataset))
dataset = dataset.select(idx.tolist())
geometry = geometry.select(idx.tolist())
else:
dataset = load_dataset(self.hf_repo, name="snapshots")[
self.split_name
]
geometry = load_dataset(self.hf_repo, name="geometry")[
self.split_name
]
if self.n_elements is not None:
dataset = dataset.select(range(self.n_elements))
geometry = geometry.select(range(self.n_elements))
total_len = len(dataset)
train_len = int(self.train_size * total_len)
valid_len = int(self.val_size * total_len)
self.dataset_dict = {
"train": dataset.select(range(0, train_len)),
"val": dataset.select(range(train_len, train_len + valid_len)),
"test": dataset.select(range(train_len + valid_len, total_len)),
}
self.geometry_dict = {
"train": geometry.select(range(0, train_len)),
"val": geometry.select(range(train_len, train_len + valid_len)),
"test": geometry.select(range(train_len + valid_len, total_len)),
}
def _build_dataset(
self,
snapshot: dict,
geometry: dict,
test: bool = False,
) -> Data:
conductivity = torch.tensor(
geometry["conductivity"], dtype=torch.float32
)
temperatures = (
torch.tensor(snapshot["unsteady"], dtype=torch.float32)
if not test
else torch.stack(
[
torch.tensor(snapshot["unsteady"], dtype=torch.float32)[
0, ...
],
torch.tensor(snapshot["steady"], dtype=torch.float32),
],
dim=0,
)
)
# print(temperatures.shape)
pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2]
if self.build_radial_graph:
raise NotImplementedError(
"Radial graph building not implemented yet."
)
else:
edge_index = torch.tensor(
geometry["edge_index"], dtype=torch.int64
).T
edge_index = to_undirected(edge_index, num_nodes=pos.size(0))
boundary_mask = torch.tensor(
geometry["constraints_mask"], dtype=torch.int64
)
boundary_values = temperatures[0, boundary_mask]
edge_attr = torch.norm(pos[edge_index[0]] - pos[edge_index[1]], dim=1)
if self.remove_boundary_edges:
boundary_idx = torch.unique(boundary_mask)
edge_index_mask = ~torch.isin(edge_index[1], boundary_idx)
edge_index = edge_index[:, edge_index_mask]
edge_attr = edge_attr[edge_index_mask]
n_data = max(temperatures.size(0) - self.unrolling_steps, 1)
data = []
if test:
data.append(
MeshData(
x=temperatures[0, :].unsqueeze(-1),
y=temperatures[1:2, :].unsqueeze(-1).permute(1, 0, 2),
c=conductivity.unsqueeze(-1),
edge_index=edge_index,
pos=pos,
edge_attr=edge_attr,
boundary_mask=boundary_mask,
boundary_values=boundary_values,
)
)
return data
for i in range(n_data):
x = temperatures[i, :].unsqueeze(-1)
y = (
temperatures[i + 1 : i + 1 + self.unrolling_steps, :]
.unsqueeze(-1)
.permute(1, 0, 2)
)
data.append(
MeshData(
x=x,
y=y,
c=conductivity.unsqueeze(-1),
edge_index=edge_index,
pos=pos,
edge_attr=edge_attr,
boundary_mask=boundary_mask,
boundary_values=boundary_values,
)
)
return data
def setup(self, stage: str = None):
if stage == "fit" or stage is None:
self.train_data = [
self._build_dataset(snap, geom)
for snap, geom in tqdm(
zip(
self.dataset_dict["train"], self.geometry_dict["train"]
),
desc="Building train graphs",
total=len(self.dataset_dict["train"]),
)
]
self.val_data = [
self._build_dataset(snap, geom)
for snap, geom in tqdm(
zip(self.dataset_dict["val"], self.geometry_dict["val"]),
desc="Building val graphs",
total=len(self.dataset_dict["val"]),
)
]
if stage == "test" or stage is None:
self.test_data = [
self._build_dataset(snap, geom, test=True)
for snap, geom in tqdm(
zip(self.dataset_dict["test"], self.geometry_dict["test"]),
desc="Building test graphs",
total=len(self.dataset_dict["test"]),
)
]
# def create_autoregressive_datasets(self, dataset: str, no_unrolling: bool = False):
# if dataset == "train":
# return AutoregressiveDataset(self.train_data, self.unrolling_steps, no_unrolling)
# if dataset == "val":
# return AutoregressiveDataset(self.val_data, self.unrolling_steps, no_unrolling)
# if dataset == "test":
# return AutoregressiveDataset(self.test_data, self.unrolling_steps, no_unrolling)
def train_dataloader(self):
# ds = self.create_autoregressive_datasets(dataset="train")
# self.train_dataset = ds
# print(type(self.train_data[0]))
ds = [i for data in self.train_data for i in data]
print(
f"\nLoading training data, using {self.unrolling_steps} unrolling steps..."
)
return DataLoader(
ds,
batch_size=self.batch_size,
shuffle=True,
num_workers=8,
pin_memory=True,
)
def val_dataloader(self):
print(
f"\nLoading validation data, using {self.unrolling_steps} unrolling steps..."
)
ds = [i for data in self.val_data for i in data]
return DataLoader(
ds,
batch_size=128,
shuffle=False,
num_workers=8,
pin_memory=True,
)
def test_dataloader(self):
ds = [i for data in self.test_data for i in data]
return DataLoader(
ds,
batch_size=1,
shuffle=False,
num_workers=8,
pin_memory=True,
)