Files
thermal-conduction-ml/ThermalSolver/normalizer.py
2025-10-02 10:17:01 +02:00

52 lines
1.8 KiB
Python

import torch
from torch_geometric.data import Data
D_IN_KEYS = "x"
D_ATTR_KEYS = ["c", "edge_attr"]
D_OUT_KEY = "y"
D_KEYS = [D_IN_KEYS] + [D_OUT_KEY] + D_ATTR_KEYS
D_BOUNDS_KEYS = "boundary_temperatures"
class Normalizer:
def __init__(self, data):
self.mean, self.std = self._compute_stats(data)
def _compute_stats(self, data: list[Data]) -> tuple[dict, dict]:
mean = {}
std = {}
for key in D_KEYS:
tmp = torch.empty(0)
for d in data:
if not hasattr(d, key):
raise AttributeError(f"Manca '{key}' in uno dei Data.")
if tmp.numel() == 0:
tmp = d[key]
else:
tmp = torch.cat([tmp, d[key]], dim=0)
mean[key] = tmp.mean(dim=0, keepdim=True)
std[key] = tmp.std(dim=0, keepdim=True) + 1e-6
return mean, std
def normalize(self, data):
for d in data:
for key in D_KEYS:
if not hasattr(d, key):
raise AttributeError(f"Manca '{key}' in uno dei Data.")
d[key] = (d[key] - self.mean[key]) / self.std[key]
self._recompute_boundary_temperatures(data)
def _recompute_boundary_temperatures(self, data):
for d in data:
bottom_bc = d.y[d.bottom_boundary_ids].median()
top_bc = d.y[d.top_boundary_ids].median()
left_bc = d.y[d.left_boundary_ids].median()
right_bc = d.y[d.right_boundary_ids].median()
boundaries_temperatures = torch.tensor(
[bottom_bc, right_bc, top_bc, left_bc], dtype=torch.float32
)
d.boundary_temperatures = boundaries_temperatures.unsqueeze(0)
def denormalize(self, y: torch.tensor):
return y * self.std[D_OUT_KEY] + self.mean[D_OUT_KEY]