Files
thermal-conduction-ml/ThermalSolver/model/local_gno.py
2025-09-25 14:44:39 +02:00

101 lines
3.0 KiB
Python

import torch
from torch import nn
from torch_geometric.nn import MessagePassing
# ---- FiLM that starts as identity and normalizes the target ----
class FiLM(nn.Module):
def __init__(self, c_ch, h_ch):
super().__init__()
self.net = nn.Sequential(
nn.Linear(c_ch, 2 * h_ch), nn.SiLU(), nn.Linear(2 * h_ch, 2 * h_ch)
)
# init to identity: gamma≈0 (so 1+gamma=1), beta=0
nn.init.zeros_(self.net[-1].weight)
nn.init.zeros_(self.net[-1].bias)
def forward(self, h, c):
gb = self.net(c)
gamma, beta = gb.chunk(2, dim=-1)
return (1 + gamma) * h + beta
class ConditionalGNOBlock(MessagePassing):
"""
Message passing with FiLM applied to the MESSAGE m_ij,
using edge context c_ij = (c_i + c_j)/2.
"""
def __init__(self, hidden_ch, edge_ch=0, aggr="add"):
super().__init__(aggr=aggr, node_dim=0)
# FiLM over the message (per-edge)
self.film_msg = FiLM(c_ch=hidden_ch, h_ch=hidden_ch)
self.edge_attr_net = nn.Sequential(
nn.Linear(edge_ch, hidden_ch // 2),
nn.SiLU(),
nn.Linear(hidden_ch // 2, hidden_ch),
)
self.x_net = nn.Sequential(
nn.Linear(hidden_ch, hidden_ch * 2),
nn.SiLU(),
nn.Linear(hidden_ch * 2, hidden_ch),
)
def forward(self, x, c, edge_index, edge_attr=None):
return self.propagate(edge_index, x=x, c=c, edge_attr=edge_attr)
def update(self, aggr_out, x):
return self.x_net(x) + aggr_out
def message(self, x_j, c_i, c_j, edge_attr):
# c_ij = (c_i + c_j)/2
c_ij = 0.5 * (c_i + c_j)
m = self.film_msg(x_j, c_ij)
if edge_attr is not None:
a_ij = self.edge_attr_net(edge_attr)
m = m * a_ij
return m
class GatingGNO(nn.Module):
"""
In:
x : [N, Cx] (e.g., u or features to predict from)
c : [N, Cf] (conditioning field, e.g., conductivity)
Out:
y : [N, out_ch]
"""
def __init__(
self, x_ch_node, f_ch_node, hidden, layers, edge_ch=0, out_ch=1
):
super().__init__()
self.encoder_x = nn.Sequential(
nn.Linear(x_ch_node, hidden // 2),
nn.SiLU(),
nn.Linear(hidden // 2, hidden),
)
self.encoder_c = nn.Sequential(
nn.Linear(f_ch_node, hidden // 2),
nn.SiLU(),
nn.Linear(hidden // 2, hidden),
)
self.blocks = nn.ModuleList(
[
ConditionalGNOBlock(hidden_ch=hidden, edge_ch=edge_ch)
for _ in range(layers)
]
)
self.dec = nn.Sequential(
nn.Linear(hidden, hidden // 2),
nn.SiLU(),
nn.Linear(hidden // 2, out_ch),
)
def forward(self, x, c, edge_index, edge_attr=None):
x = self.encoder_x(x) # [N,H]
c = self.encoder_c(c) # [N,H]
for blk in self.blocks:
x = blk(x, c, edge_index, edge_attr=edge_attr)
return self.dec(x)