Files
thermal-conduction-ml/ThermalSolver/data_module.py
2025-09-25 14:44:39 +02:00

98 lines
3.1 KiB
Python

import torch
from tqdm import tqdm
from lightning import LightningDataModule
from datasets import load_dataset
from torch_geometric.data import Data
from torch_geometric.loader import DataLoader
from torch_geometric.utils import to_undirected
class GraphDataModule(LightningDataModule):
def __init__(
self,
hf_repo: str,
split_name: str,
train_size: float = 0.8,
val_size: float = 0.1,
test_size: float = 0.1,
batch_size: int = 32,
):
super().__init__()
self.hf_repo = hf_repo
self.split_name = split_name
self.dataset = None
self.geometry = None
self.train_size = train_size
self.val_size = val_size
self.test_size = test_size
self.batch_size = batch_size
def prepare_data(self):
hf_dataset = load_dataset(self.hf_repo, name="snapshots")[
self.split_name
]
self.geometry = load_dataset(self.hf_repo, name="geometry")[
self.split_name
]
edge_index = torch.tensor(
self.geometry["edge_index"][0], dtype=torch.int64
)
pos = torch.tensor(self.geometry["points"][0], dtype=torch.float32)[
:, :2
]
self.data = [
self._build_dataset(
torch.tensor(snapshot["conductivity"], dtype=torch.float32),
torch.tensor(snapshot["boundary_values"], dtype=torch.float32),
torch.tensor(snapshot["temperature"], dtype=torch.float32),
edge_index.T,
pos,
)
for snapshot in tqdm(hf_dataset, desc="Building graphs")
]
def _build_dataset(
self,
conductivity: torch.Tensor,
boundary_vales: torch.Tensor,
temperature: torch.Tensor,
edge_index: torch.Tensor,
pos: torch.Tensor,
) -> Data:
edge_index = to_undirected(edge_index, num_nodes=pos.size(0))
edge_attr = pos[edge_index[0]] - pos[edge_index[1]]
edge_attr = torch.cat(
[edge_attr, torch.norm(edge_attr, dim=1).unsqueeze(-1)], dim=1
)
return Data(
x=boundary_vales.unsqueeze(-1),
c=conductivity.unsqueeze(-1),
edge_index=edge_index,
pos=pos,
edge_attr=edge_attr,
y=temperature.unsqueeze(-1),
)
def setup(self, stage: str = None):
n = len(self.data)
train_end = int(n * self.train_size)
val_end = train_end + int(n * self.val_size)
if stage == "fit" or stage is None:
self.train_data = self.data[:train_end]
self.val_data = self.data[train_end:val_end]
if stage == "test" or stage is None:
self.test_data = self.data[val_end:]
def train_dataloader(self) -> DataLoader:
return DataLoader(
self.train_data, batch_size=self.batch_size, shuffle=True
)
def val_dataloader(self) -> DataLoader:
return DataLoader(self.val_data, batch_size=self.batch_size)
def test_dataloader(self) -> DataLoader:
return DataLoader(self.test_data, batch_size=self.batch_size)