98 lines
3.1 KiB
Python
98 lines
3.1 KiB
Python
import torch
|
|
from tqdm import tqdm
|
|
from lightning import LightningDataModule
|
|
from datasets import load_dataset
|
|
from torch_geometric.data import Data
|
|
from torch_geometric.loader import DataLoader
|
|
from torch_geometric.utils import to_undirected
|
|
|
|
|
|
class GraphDataModule(LightningDataModule):
|
|
def __init__(
|
|
self,
|
|
hf_repo: str,
|
|
split_name: str,
|
|
train_size: float = 0.8,
|
|
val_size: float = 0.1,
|
|
test_size: float = 0.1,
|
|
batch_size: int = 32,
|
|
):
|
|
super().__init__()
|
|
self.hf_repo = hf_repo
|
|
self.split_name = split_name
|
|
self.dataset = None
|
|
self.geometry = None
|
|
self.train_size = train_size
|
|
self.val_size = val_size
|
|
self.test_size = test_size
|
|
self.batch_size = batch_size
|
|
|
|
def prepare_data(self):
|
|
hf_dataset = load_dataset(self.hf_repo, name="snapshots")[
|
|
self.split_name
|
|
]
|
|
self.geometry = load_dataset(self.hf_repo, name="geometry")[
|
|
self.split_name
|
|
]
|
|
edge_index = torch.tensor(
|
|
self.geometry["edge_index"][0], dtype=torch.int64
|
|
)
|
|
pos = torch.tensor(self.geometry["points"][0], dtype=torch.float32)[
|
|
:, :2
|
|
]
|
|
self.data = [
|
|
self._build_dataset(
|
|
torch.tensor(snapshot["conductivity"], dtype=torch.float32),
|
|
torch.tensor(snapshot["boundary_values"], dtype=torch.float32),
|
|
torch.tensor(snapshot["temperature"], dtype=torch.float32),
|
|
edge_index.T,
|
|
pos,
|
|
)
|
|
for snapshot in tqdm(hf_dataset, desc="Building graphs")
|
|
]
|
|
|
|
def _build_dataset(
|
|
self,
|
|
conductivity: torch.Tensor,
|
|
boundary_vales: torch.Tensor,
|
|
temperature: torch.Tensor,
|
|
edge_index: torch.Tensor,
|
|
pos: torch.Tensor,
|
|
) -> Data:
|
|
edge_index = to_undirected(edge_index, num_nodes=pos.size(0))
|
|
edge_attr = pos[edge_index[0]] - pos[edge_index[1]]
|
|
edge_attr = torch.cat(
|
|
[edge_attr, torch.norm(edge_attr, dim=1).unsqueeze(-1)], dim=1
|
|
)
|
|
|
|
return Data(
|
|
x=boundary_vales.unsqueeze(-1),
|
|
c=conductivity.unsqueeze(-1),
|
|
edge_index=edge_index,
|
|
pos=pos,
|
|
edge_attr=edge_attr,
|
|
y=temperature.unsqueeze(-1),
|
|
)
|
|
|
|
def setup(self, stage: str = None):
|
|
n = len(self.data)
|
|
train_end = int(n * self.train_size)
|
|
val_end = train_end + int(n * self.val_size)
|
|
|
|
if stage == "fit" or stage is None:
|
|
self.train_data = self.data[:train_end]
|
|
self.val_data = self.data[train_end:val_end]
|
|
if stage == "test" or stage is None:
|
|
self.test_data = self.data[val_end:]
|
|
|
|
def train_dataloader(self) -> DataLoader:
|
|
return DataLoader(
|
|
self.train_data, batch_size=self.batch_size, shuffle=True
|
|
)
|
|
|
|
def val_dataloader(self) -> DataLoader:
|
|
return DataLoader(self.val_data, batch_size=self.batch_size)
|
|
|
|
def test_dataloader(self) -> DataLoader:
|
|
return DataLoader(self.test_data, batch_size=self.batch_size)
|