Files
PINA/pina/data/data_module.py
Filippo Olivo 571ef7f9e2 Add functionalities in DataModule and data loaders + tests datasets and DataModule (#453)
* Add num_workers and pin_memory arguments to DataLoader and DataModule tests
2025-03-19 17:46:35 +01:00

409 lines
16 KiB
Python

import logging
import warnings
from lightning.pytorch import LightningDataModule
import torch
from ..label_tensor import LabelTensor
from torch.utils.data import DataLoader, BatchSampler, SequentialSampler, \
RandomSampler
from torch.utils.data.distributed import DistributedSampler
from .dataset import PinaDatasetFactory
from ..collector import Collector
class DummyDataloader:
""""
Dummy dataloader used when batch size is None. It callects all the data
in self.dataset and returns it when it is called a single batch.
"""
def __init__(self, dataset):
"""
param dataset: The dataset object to be processed.
:notes:
- **Distributed Environment**:
- Divides the dataset across processes using the
rank and world size.
- Fetches only the portion of data corresponding to
the current process.
- **Non-Distributed Environment**:
- Fetches the entire dataset.
"""
if (torch.distributed.is_available() and
torch.distributed.is_initialized()):
rank = torch.distributed.get_rank()
world_size = torch.distributed.get_world_size()
if len(dataset) < world_size:
raise RuntimeError(
"Dimension of the dataset smaller than world size."
" Increase the size of the partition or use a single GPU")
idx, i = [], rank
while i < len(dataset):
idx.append(i)
i += world_size
self.dataset = dataset.fetch_from_idx_list(idx)
else:
self.dataset = dataset.get_all_data()
def __iter__(self):
return self
def __len__(self):
return 1
def __next__(self):
return self.dataset
class Collator:
def __init__(self, max_conditions_lengths, dataset=None):
self.max_conditions_lengths = max_conditions_lengths
self.callable_function = self._collate_custom_dataloader if \
max_conditions_lengths is None else (
self._collate_standard_dataloader)
self.dataset = dataset
def _collate_custom_dataloader(self, batch):
return self.dataset.fetch_from_idx_list(batch)
def _collate_standard_dataloader(self, batch):
"""
Function used to collate the batch
"""
batch_dict = {}
if isinstance(batch, dict):
return batch
conditions_names = batch[0].keys()
# Condition names
for condition_name in conditions_names:
single_cond_dict = {}
condition_args = batch[0][condition_name].keys()
for arg in condition_args:
data_list = [batch[idx][condition_name][arg] for idx in range(
min(len(batch),
self.max_conditions_lengths[condition_name]))]
if isinstance(data_list[0], LabelTensor):
single_cond_dict[arg] = LabelTensor.stack(data_list)
elif isinstance(data_list[0], torch.Tensor):
single_cond_dict[arg] = torch.stack(data_list)
else:
raise NotImplementedError(
f"Data type {type(data_list[0])} not supported")
batch_dict[condition_name] = single_cond_dict
return batch_dict
def __call__(self, batch):
return self.callable_function(batch)
class PinaSampler:
def __new__(cls, dataset, shuffle):
if (torch.distributed.is_available() and
torch.distributed.is_initialized()):
sampler = DistributedSampler(dataset, shuffle=shuffle)
else:
if shuffle:
sampler = RandomSampler(dataset)
else:
sampler = SequentialSampler(dataset)
return sampler
class PinaDataModule(LightningDataModule):
"""
This class extend LightningDataModule, allowing proper creation and
management of different types of Datasets defined in PINA
"""
def __init__(self,
problem,
train_size=.7,
test_size=.2,
val_size=.1,
predict_size=0.,
batch_size=None,
shuffle=True,
repeat=False,
automatic_batching=False,
num_workers=0,
pin_memory=False,
):
"""
Initialize the object, creating datasets based on the input problem.
:param problem: The problem defining the dataset.
:type problem: AbstractProblem
:param train_size: Fraction or number of elements in the training split.
:type train_size: float
:param test_size: Fraction or number of elements in the test split.
:type test_size: float
:param val_size: Fraction or number of elements in the validation split.
:type val_size: float
:param predict_size: Fraction or number of elements in the prediction split.
:type predict_size: float
:param batch_size: Batch size used for training. If None, the entire dataset is used per batch.
:type batch_size: int or None
:param shuffle: Whether to shuffle the dataset before splitting.
:type shuffle: bool
:param repeat: Whether to repeat the dataset indefinitely.
:type repeat: bool
:param automatic_batching: Whether to enable automatic batching.
:type automatic_batching: bool
:param num_workers: Number of worker threads for data loading. Default 0 (serial loading)
:type num_workers: int
:param pin_memory: Whether to use pinned memory for faster data transfer to GPU. (Default False)
:type pin_memory: bool
"""
logging.debug('Start initialization of Pina DataModule')
logging.info('Start initialization of Pina DataModule')
super().__init__()
self.automatic_batching = automatic_batching
self.batch_size = batch_size
self.shuffle = shuffle
self.repeat = repeat
# Check if the splits are correct
self._check_slit_sizes(train_size, test_size, val_size, predict_size)
# Begin Data splitting
splits_dict = {}
if train_size > 0:
splits_dict['train'] = train_size
self.train_dataset = None
else:
self.train_dataloader = super().train_dataloader
if test_size > 0:
splits_dict['test'] = test_size
self.test_dataset = None
else:
self.test_dataloader = super().test_dataloader
if val_size > 0:
splits_dict['val'] = val_size
self.val_dataset = None
else:
self.val_dataloader = super().val_dataloader
if predict_size > 0:
splits_dict['predict'] = predict_size
self.predict_dataset = None
else:
self.predict_dataloader = super().predict_dataloader
collector = Collector(problem)
collector.store_fixed_data()
collector.store_sample_domains()
if batch_size is None and num_workers != 0:
warnings.warn(
"Setting num_workers when batch_size is None has no effect on "
"the DataLoading process.")
if batch_size is None and pin_memory:
warnings.warn("Setting pin_memory to True has no effect when "
"batch_size is None.")
self.num_workers = num_workers
self.pin_memory = pin_memory
self.collector_splits = self._create_splits(collector, splits_dict)
self.transfer_batch_to_device = self._transfer_batch_to_device
def setup(self, stage=None):
"""
Perform the splitting of the dataset
"""
logging.debug('Start setup of Pina DataModule obj')
if stage == 'fit' or stage is None:
self.train_dataset = PinaDatasetFactory(
self.collector_splits['train'],
max_conditions_lengths=self.find_max_conditions_lengths(
'train'), automatic_batching=self.automatic_batching)
if 'val' in self.collector_splits.keys():
self.val_dataset = PinaDatasetFactory(
self.collector_splits['val'],
max_conditions_lengths=self.find_max_conditions_lengths(
'val'), automatic_batching=self.automatic_batching
)
elif stage == 'test':
self.test_dataset = PinaDatasetFactory(
self.collector_splits['test'],
max_conditions_lengths=self.find_max_conditions_lengths(
'test'), automatic_batching=self.automatic_batching
)
elif stage == 'predict':
self.predict_dataset = PinaDatasetFactory(
self.collector_splits['predict'],
max_conditions_lengths=self.find_max_conditions_lengths(
'predict'), automatic_batching=self.automatic_batching
)
else:
raise ValueError(
"stage must be either 'fit' or 'test' or 'predict'."
)
@staticmethod
def _split_condition(condition_dict, splits_dict):
len_condition = len(condition_dict['input_points'])
lengths = [
int(len_condition * length) for length in
splits_dict.values()
]
remainder = len_condition - sum(lengths)
for i in range(remainder):
lengths[i % len(lengths)] += 1
splits_dict = {k: max(1, v) for k, v in zip(splits_dict.keys(), lengths)
}
to_return_dict = {}
offset = 0
for stage, stage_len in splits_dict.items():
to_return_dict[stage] = {k: v[offset:offset + stage_len]
for k, v in condition_dict.items() if
k != 'equation'
# Equations are NEVER dataloaded
}
if offset + stage_len > len_condition:
offset = len_condition - 1
continue
offset += stage_len
return to_return_dict
def _create_splits(self, collector, splits_dict):
"""
Create the dataset objects putting data
"""
# ----------- Auxiliary function ------------
def _apply_shuffle(condition_dict, len_data):
idx = torch.randperm(len_data)
for k, v in condition_dict.items():
if k == 'equation':
continue
if isinstance(v, list):
condition_dict[k] = [v[i] for i in idx]
elif isinstance(v, LabelTensor):
condition_dict[k] = LabelTensor(v.tensor[idx],
v.labels)
elif isinstance(v, torch.Tensor):
condition_dict[k] = v[idx]
else:
raise ValueError(f"Data type {type(v)} not supported")
# ----------- End auxiliary function ------------
logging.debug('Dataset creation in PinaDataModule obj')
split_names = list(splits_dict.keys())
dataset_dict = {name: {} for name in split_names}
for condition_name, condition_dict in collector.data_collections.items():
len_data = len(condition_dict['input_points'])
if self.shuffle:
_apply_shuffle(condition_dict, len_data)
for key, data in self._split_condition(condition_dict,
splits_dict).items():
dataset_dict[key].update({condition_name: data})
return dataset_dict
def _create_dataloader(self, split, dataset):
shuffle = self.shuffle if split == 'train' else False
# Suppress the warning about num_workers.
# In many cases, especially for PINNs, serial data loading can outperform parallel data loading.
warnings.filterwarnings(
"ignore",
message=(
r"The '(train|val|test)_dataloader' does not have many workers which may be a bottleneck."),
module="lightning.pytorch.trainer.connectors.data_connector"
)
# Use custom batching (good if batch size is large)
if self.batch_size is not None:
sampler = PinaSampler(dataset, shuffle)
if self.automatic_batching:
collate = Collator(self.find_max_conditions_lengths(split))
else:
collate = Collator(None, dataset)
return DataLoader(dataset, self.batch_size,
collate_fn=collate, sampler=sampler,
num_workers=self.num_workers)
dataloader = DummyDataloader(dataset)
dataloader.dataset = self._transfer_batch_to_device(
dataloader.dataset, self.trainer.strategy.root_device, 0)
self.transfer_batch_to_device = self._transfer_batch_to_device_dummy
return dataloader
def find_max_conditions_lengths(self, split):
max_conditions_lengths = {}
for k, v in self.collector_splits[split].items():
if self.batch_size is None:
max_conditions_lengths[k] = len(v['input_points'])
elif self.repeat:
max_conditions_lengths[k] = self.batch_size
else:
max_conditions_lengths[k] = min(len(v['input_points']),
self.batch_size)
return max_conditions_lengths
def val_dataloader(self):
"""
Create the validation dataloader
"""
return self._create_dataloader('val', self.val_dataset)
def train_dataloader(self):
"""
Create the training dataloader
"""
return self._create_dataloader('train', self.train_dataset)
def test_dataloader(self):
"""
Create the testing dataloader
"""
return self._create_dataloader('test', self.test_dataset)
def predict_dataloader(self):
"""
Create the prediction dataloader
"""
raise NotImplementedError("Predict dataloader not implemented")
@staticmethod
def _transfer_batch_to_device_dummy(batch, device, dataloader_idx):
return batch
def _transfer_batch_to_device(self, batch, device, dataloader_idx):
"""
Transfer the batch to the device. This method is called in the
training loop and is used to transfer the batch to the device.
"""
batch = [
(k,
super(LightningDataModule, self).transfer_batch_to_device(
v, device, dataloader_idx))
for k, v in batch.items()
]
return batch
@staticmethod
def _check_slit_sizes(train_size, test_size, val_size, predict_size):
"""
Check if the splits are correct
"""
if train_size < 0 or test_size < 0 or val_size < 0 or predict_size < 0:
raise ValueError("The splits must be positive")
if abs(train_size + test_size + val_size + predict_size - 1) > 1e-6:
raise ValueError("The sum of the splits must be 1")
@property
def input_points(self):
"""
# TODO
"""
to_return = {}
if hasattr(self, "train_dataset") and self.train_dataset is not None:
to_return["train"] = self.train_dataset.input_points
if hasattr(self, "val_dataset") and self.val_dataset is not None:
to_return["val"] = self.val_dataset.input_points
if hasattr(self, "test_dataset") and self.test_dataset is not None:
to_return = self.test_dataset.input_points
return to_return