Files
PINA/tests/test_data/test_graph_dataset.py
Filippo Olivo 571ef7f9e2 Add functionalities in DataModule and data loaders + tests datasets and DataModule (#453)
* Add num_workers and pin_memory arguments to DataLoader and DataModule tests
2025-03-19 17:46:35 +01:00

102 lines
3.4 KiB
Python

import torch
import pytest
from pina.data.dataset import PinaDatasetFactory, PinaGraphDataset
from pina.graph import KNNGraph
from torch_geometric.data import Data
x = torch.rand((100, 20, 10))
pos = torch.rand((100, 20, 2))
input_ = KNNGraph(x=x, pos=pos, k=3, build_edge_attr=True)
output_ = torch.rand((100, 20, 10))
x_2 = torch.rand((50, 20, 10))
pos_2 = torch.rand((50, 20, 2))
input_2_ = KNNGraph(x=x_2, pos=pos_2, k=3, build_edge_attr=True)
output_2_ = torch.rand((50, 20, 10))
# Problem with a single condition
conditions_dict_single = {
'data': {
'input_points': input_.data,
'output_points': output_,
}
}
max_conditions_lengths_single = {
'data': 100
}
# Problem with multiple conditions
conditions_dict_single_multi = {
'data_1': {
'input_points': input_.data,
'output_points': output_,
},
'data_2': {
'input_points': input_2_.data,
'output_points': output_2_,
}
}
max_conditions_lengths_multi = {
'data_1': 100,
'data_2': 50
}
@pytest.mark.parametrize(
"conditions_dict, max_conditions_lengths",
[
(conditions_dict_single, max_conditions_lengths_single),
(conditions_dict_single_multi, max_conditions_lengths_multi)
]
)
def test_constructor(conditions_dict, max_conditions_lengths):
dataset = PinaDatasetFactory(conditions_dict,
max_conditions_lengths=max_conditions_lengths,
automatic_batching=True)
assert isinstance(dataset, PinaGraphDataset)
assert len(dataset) == 100
@pytest.mark.parametrize(
"conditions_dict, max_conditions_lengths",
[
(conditions_dict_single, max_conditions_lengths_single),
(conditions_dict_single_multi, max_conditions_lengths_multi)
]
)
def test_getitem(conditions_dict, max_conditions_lengths):
dataset = PinaDatasetFactory(conditions_dict,
max_conditions_lengths=max_conditions_lengths,
automatic_batching=True)
data = dataset[50]
assert isinstance(data, dict)
assert all([isinstance(d['input_points'], Data)
for d in data.values()])
assert all([isinstance(d['output_points'], torch.Tensor)
for d in data.values()])
assert all([d['input_points'].x.shape == torch.Size((20, 10))
for d in data.values()])
assert all([d['output_points'].shape == torch.Size((20, 10))
for d in data.values()])
assert all([d['input_points'].edge_index.shape ==
torch.Size((2, 60)) for d in data.values()])
assert all([d['input_points'].edge_attr.shape[0]
== 60 for d in data.values()])
data = dataset.fetch_from_idx_list([i for i in range(20)])
assert isinstance(data, dict)
assert all([isinstance(d['input_points'], Data)
for d in data.values()])
assert all([isinstance(d['output_points'], torch.Tensor)
for d in data.values()])
assert all([d['input_points'].x.shape == torch.Size((400, 10))
for d in data.values()])
assert all([d['output_points'].shape == torch.Size((400, 10))
for d in data.values()])
assert all([d['input_points'].edge_index.shape ==
torch.Size((2, 1200)) for d in data.values()])
assert all([d['input_points'].edge_attr.shape[0]
== 1200 for d in data.values()])