* Reimplement conditions * Refactor datasets and implement LabelBatch --------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
89 lines
3.0 KiB
Python
89 lines
3.0 KiB
Python
import torch
|
|
import pytest
|
|
from pina.data.dataset import PinaDatasetFactory, PinaTensorDataset
|
|
|
|
input_tensor = torch.rand((100, 10))
|
|
output_tensor = torch.rand((100, 2))
|
|
|
|
input_tensor_2 = torch.rand((50, 10))
|
|
output_tensor_2 = torch.rand((50, 2))
|
|
|
|
conditions_dict_single = {
|
|
'data': {
|
|
'input': input_tensor,
|
|
'target': output_tensor,
|
|
}
|
|
}
|
|
|
|
conditions_dict_single_multi = {
|
|
'data_1': {
|
|
'input': input_tensor,
|
|
'target': output_tensor,
|
|
},
|
|
'data_2': {
|
|
'input': input_tensor_2,
|
|
'target': output_tensor_2,
|
|
}
|
|
}
|
|
|
|
max_conditions_lengths_single = {
|
|
'data': 100
|
|
}
|
|
|
|
max_conditions_lengths_multi = {
|
|
'data_1': 100,
|
|
'data_2': 50
|
|
}
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"conditions_dict, max_conditions_lengths",
|
|
[
|
|
(conditions_dict_single, max_conditions_lengths_single),
|
|
(conditions_dict_single_multi, max_conditions_lengths_multi)
|
|
]
|
|
)
|
|
def test_constructor_tensor(conditions_dict, max_conditions_lengths):
|
|
dataset = PinaDatasetFactory(conditions_dict,
|
|
max_conditions_lengths=max_conditions_lengths,
|
|
automatic_batching=True)
|
|
assert isinstance(dataset, PinaTensorDataset)
|
|
|
|
|
|
def test_getitem_single():
|
|
dataset = PinaDatasetFactory(conditions_dict_single,
|
|
max_conditions_lengths=max_conditions_lengths_single,
|
|
automatic_batching=False)
|
|
|
|
tensors = dataset.fetch_from_idx_list([i for i in range(70)])
|
|
assert isinstance(tensors, dict)
|
|
assert list(tensors.keys()) == ['data']
|
|
assert sorted(list(tensors['data'].keys())) == [
|
|
'input', 'target']
|
|
assert isinstance(tensors['data']['input'], torch.Tensor)
|
|
assert tensors['data']['input'].shape == torch.Size((70, 10))
|
|
assert isinstance(tensors['data']['target'], torch.Tensor)
|
|
assert tensors['data']['target'].shape == torch.Size((70, 2))
|
|
|
|
|
|
def test_getitem_multi():
|
|
dataset = PinaDatasetFactory(conditions_dict_single_multi,
|
|
max_conditions_lengths=max_conditions_lengths_multi,
|
|
automatic_batching=False)
|
|
tensors = dataset.fetch_from_idx_list([i for i in range(70)])
|
|
assert isinstance(tensors, dict)
|
|
assert list(tensors.keys()) == ['data_1', 'data_2']
|
|
assert sorted(list(tensors['data_1'].keys())) == [
|
|
'input', 'target']
|
|
assert isinstance(tensors['data_1']['input'], torch.Tensor)
|
|
assert tensors['data_1']['input'].shape == torch.Size((70, 10))
|
|
assert isinstance(tensors['data_1']['target'], torch.Tensor)
|
|
assert tensors['data_1']['target'].shape == torch.Size((70, 2))
|
|
|
|
assert sorted(list(tensors['data_2'].keys())) == [
|
|
'input', 'target']
|
|
assert isinstance(tensors['data_2']['input'], torch.Tensor)
|
|
assert tensors['data_2']['input'].shape == torch.Size((50, 10))
|
|
assert isinstance(tensors['data_2']['target'], torch.Tensor)
|
|
assert tensors['data_2']['target'].shape == torch.Size((50, 2))
|