Files
PINA/tests/test_data/test_tensor_dataset.py
Filippo Olivo a0cbf1c44a Improve conditions and refactor dataset classes (#475)
* Reimplement conditions

* Refactor datasets and implement LabelBatch

---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
2025-03-19 17:46:36 +01:00

89 lines
3.0 KiB
Python

import torch
import pytest
from pina.data.dataset import PinaDatasetFactory, PinaTensorDataset
input_tensor = torch.rand((100, 10))
output_tensor = torch.rand((100, 2))
input_tensor_2 = torch.rand((50, 10))
output_tensor_2 = torch.rand((50, 2))
conditions_dict_single = {
'data': {
'input': input_tensor,
'target': output_tensor,
}
}
conditions_dict_single_multi = {
'data_1': {
'input': input_tensor,
'target': output_tensor,
},
'data_2': {
'input': input_tensor_2,
'target': output_tensor_2,
}
}
max_conditions_lengths_single = {
'data': 100
}
max_conditions_lengths_multi = {
'data_1': 100,
'data_2': 50
}
@pytest.mark.parametrize(
"conditions_dict, max_conditions_lengths",
[
(conditions_dict_single, max_conditions_lengths_single),
(conditions_dict_single_multi, max_conditions_lengths_multi)
]
)
def test_constructor_tensor(conditions_dict, max_conditions_lengths):
dataset = PinaDatasetFactory(conditions_dict,
max_conditions_lengths=max_conditions_lengths,
automatic_batching=True)
assert isinstance(dataset, PinaTensorDataset)
def test_getitem_single():
dataset = PinaDatasetFactory(conditions_dict_single,
max_conditions_lengths=max_conditions_lengths_single,
automatic_batching=False)
tensors = dataset.fetch_from_idx_list([i for i in range(70)])
assert isinstance(tensors, dict)
assert list(tensors.keys()) == ['data']
assert sorted(list(tensors['data'].keys())) == [
'input', 'target']
assert isinstance(tensors['data']['input'], torch.Tensor)
assert tensors['data']['input'].shape == torch.Size((70, 10))
assert isinstance(tensors['data']['target'], torch.Tensor)
assert tensors['data']['target'].shape == torch.Size((70, 2))
def test_getitem_multi():
dataset = PinaDatasetFactory(conditions_dict_single_multi,
max_conditions_lengths=max_conditions_lengths_multi,
automatic_batching=False)
tensors = dataset.fetch_from_idx_list([i for i in range(70)])
assert isinstance(tensors, dict)
assert list(tensors.keys()) == ['data_1', 'data_2']
assert sorted(list(tensors['data_1'].keys())) == [
'input', 'target']
assert isinstance(tensors['data_1']['input'], torch.Tensor)
assert tensors['data_1']['input'].shape == torch.Size((70, 10))
assert isinstance(tensors['data_1']['target'], torch.Tensor)
assert tensors['data_1']['target'].shape == torch.Size((70, 2))
assert sorted(list(tensors['data_2'].keys())) == [
'input', 'target']
assert isinstance(tensors['data_2']['input'], torch.Tensor)
assert tensors['data_2']['input'].shape == torch.Size((50, 10))
assert isinstance(tensors['data_2']['target'], torch.Tensor)
assert tensors['data_2']['target'].shape == torch.Size((50, 2))