156 lines
4.9 KiB
Python
156 lines
4.9 KiB
Python
import torch
|
|
|
|
from pina.problem import AbstractProblem
|
|
from pina import Condition, LabelTensor
|
|
from pina.solvers import SupervisedSolver
|
|
from pina.trainer import Trainer
|
|
from pina.model import FeedForward
|
|
from pina.loss.loss_interface import LpLoss
|
|
|
|
|
|
class NeuralOperatorProblem(AbstractProblem):
|
|
input_variables = ['u_0', 'u_1']
|
|
output_variables = ['u']
|
|
domains = {
|
|
'pts': LabelTensor(
|
|
torch.rand(100, 2),
|
|
labels={1: {'name': 'space', 'dof': ['u_0', 'u_1']}}
|
|
)
|
|
}
|
|
conditions = {
|
|
'data' : Condition(
|
|
domain='pts',
|
|
output_points=LabelTensor(
|
|
torch.rand(100, 1),
|
|
labels={1: {'name': 'output', 'dof': ['u']}}
|
|
)
|
|
)
|
|
}
|
|
|
|
class myFeature(torch.nn.Module):
|
|
"""
|
|
Feature: sin(x)
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(myFeature, self).__init__()
|
|
|
|
def forward(self, x):
|
|
t = (torch.sin(x.extract(['u_0']) * torch.pi) *
|
|
torch.sin(x.extract(['u_1']) * torch.pi))
|
|
return LabelTensor(t, ['sin(x)sin(y)'])
|
|
|
|
|
|
problem = NeuralOperatorProblem()
|
|
# make the problem + extra feats
|
|
extra_feats = [myFeature()]
|
|
model = FeedForward(len(problem.input_variables),
|
|
len(problem.output_variables))
|
|
model_extra_feats = FeedForward(
|
|
len(problem.input_variables) + 1,
|
|
len(problem.output_variables))
|
|
|
|
|
|
def test_constructor():
|
|
SupervisedSolver(problem=problem, model=model)
|
|
|
|
|
|
# def test_constructor_extra_feats():
|
|
# SupervisedSolver(problem=problem, model=model_extra_feats, extra_features=extra_feats)
|
|
|
|
|
|
class AutoSolver(SupervisedSolver):
|
|
|
|
def forward(self, input):
|
|
from pina.graph import Graph
|
|
print(Graph)
|
|
print(input)
|
|
if not isinstance(input, Graph):
|
|
input = Graph.build('radius', nodes_coordinates=input, nodes_data=torch.rand(input.shape), radius=0.2)
|
|
print(input)
|
|
print(input.data.edge_index)
|
|
print(input.data)
|
|
g = self.model[0](input.data, edge_index=input.data.edge_index)
|
|
g.labels = {1: {'name': 'output', 'dof': ['u']}}
|
|
return g
|
|
du_dt_new = LabelTensor(self.model[0](graph).reshape(-1,1), labels = ['du'])
|
|
|
|
return du_dt_new
|
|
|
|
class GraphModel(torch.nn.Module):
|
|
def __init__(self, in_channels, out_channels):
|
|
from torch_geometric.nn import GCNConv, NNConv
|
|
super().__init__()
|
|
self.conv1 = GCNConv(in_channels, 16)
|
|
self.conv2 = GCNConv(16, out_channels)
|
|
|
|
def forward(self, data, edge_index):
|
|
print(data)
|
|
x = data.x
|
|
print(x)
|
|
x = self.conv1(x, edge_index)
|
|
x = x.relu()
|
|
x = self.conv2(x, edge_index)
|
|
return x
|
|
|
|
def test_graph():
|
|
|
|
solver = AutoSolver(problem = problem, model=GraphModel(2, 1), loss=LpLoss())
|
|
trainer = Trainer(solver=solver, max_epochs=30, accelerator='cpu', batch_size=20)
|
|
trainer.train()
|
|
assert False
|
|
|
|
|
|
def test_train_cpu():
|
|
solver = SupervisedSolver(problem = problem, model=model, loss=LpLoss())
|
|
trainer = Trainer(solver=solver, max_epochs=300, accelerator='cpu', batch_size=20)
|
|
trainer.train()
|
|
|
|
|
|
# def test_train_restore():
|
|
# tmpdir = "tests/tmp_restore"
|
|
# solver = SupervisedSolver(problem=problem,
|
|
# model=model,
|
|
# extra_features=None,
|
|
# loss=LpLoss())
|
|
# trainer = Trainer(solver=solver,
|
|
# max_epochs=5,
|
|
# accelerator='cpu',
|
|
# default_root_dir=tmpdir)
|
|
# trainer.train()
|
|
# ntrainer = Trainer(solver=solver, max_epochs=15, accelerator='cpu')
|
|
# t = ntrainer.train(
|
|
# ckpt_path=f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt')
|
|
# import shutil
|
|
# shutil.rmtree(tmpdir)
|
|
|
|
|
|
# def test_train_load():
|
|
# tmpdir = "tests/tmp_load"
|
|
# solver = SupervisedSolver(problem=problem,
|
|
# model=model,
|
|
# extra_features=None,
|
|
# loss=LpLoss())
|
|
# trainer = Trainer(solver=solver,
|
|
# max_epochs=15,
|
|
# accelerator='cpu',
|
|
# default_root_dir=tmpdir)
|
|
# trainer.train()
|
|
# new_solver = SupervisedSolver.load_from_checkpoint(
|
|
# f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=15.ckpt',
|
|
# problem = problem, model=model)
|
|
# test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
|
|
# assert new_solver.forward(test_pts).shape == (20, 1)
|
|
# assert new_solver.forward(test_pts).shape == solver.forward(test_pts).shape
|
|
# torch.testing.assert_close(
|
|
# new_solver.forward(test_pts),
|
|
# solver.forward(test_pts))
|
|
# import shutil
|
|
# shutil.rmtree(tmpdir)
|
|
|
|
# def test_train_extra_feats_cpu():
|
|
# pinn = SupervisedSolver(problem=problem,
|
|
# model=model_extra_feats,
|
|
# extra_features=extra_feats)
|
|
# trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu')
|
|
# trainer.train() |